Prairie State Achievement Examination

Performance-Level Definitions

Illinois State Board of Education

Ronald J. Gidwitz
Chairman

Glenn W. M¢Gee
State Superintendent
Introduction

The Prairie State Achievement Examination (PSAE), which was administered to Illinois grade 11 public school students for the first time in spring 2001, assesses the high school benchmarks defined by the Illinois Learning Standards. Student performance on the PSAE is evaluated relative to four levels: Exceeds Standards, Meets Standards, Below Standards, and Academic Warning.

The work of students at each performance level is summarized in the following profiles:

- **Exceeds Standards** – Student work demonstrates advanced knowledge and skills in the subject. Students creatively apply knowledge and skills to solve problems and evaluate the results.

- **Meets Standards** – Student work demonstrates proficient knowledge and skills in the subject. Students effectively apply knowledge and skills to solve problems.

- **Below Standards** – Student work demonstrates basic knowledge and skills in the subject. However, because of gaps in learning, students apply knowledge and skills in limited ways.

- **Academic Warning** – Student work demonstrates limited knowledge and skills in the subject. Because of major gaps in learning, students apply knowledge and skills ineffectively.

The definitions in this document describe each of the four performance categories for the five subjects that are assessed by the PSAE. **Examples are provided only as guidance and are not meant to be exhaustive.**
Reading

The PSAE reading test consists of two components: ACT Assessment Reading and WorkKeys Reading for Information. The components assess the Illinois Learning Standards for reading contained in State Goals 1 and 2: ability to read literary and informational texts with understanding and fluency.

Exceeds Standards

Readers at the Exceeds Standards level demonstrate advanced knowledge and skills in reading. They creatively apply knowledge and skills in comprehending a variety of complex literary and informational texts.

Readers who exceed the Standards identify and understand abstract themes and ideas in the text and support their ideas with relevant information from the text and their coursework in other subjects. They make connections among ideas. These readers analyze both the meaning and structure of the text to understand and apply important information. They infer implicit main ideas and draw logical conclusions based both on evidence in the text and their own knowledge.

These readers understand the broad meanings that underlie a text and recognize multiple perspectives and interpretations. They use clues in the text to understand complex character traits and motives. They use context clues to determine the appropriate meaning of words that have multiple meanings and of words in figurative contexts.

Readers who exceed the Standards interpret and evaluate the use of a range of literary devices, including word choice, language structure, figurative language, and point of view.

Meets Standards

Readers at the Meets Standards level demonstrate proficient knowledge and skills in reading. They effectively apply knowledge and skills in comprehending a variety of challenging literary and informational texts.

Readers who meet the Standards demonstrate a general understanding of the important ideas in the text and support their ideas with relevant information from the text and sometimes from their own knowledge and experience. These readers use knowledge of text structure to recall and understand important information. They make connections between explicit main ideas and some implicit main ideas. They draw conclusions using evidence in the text and their own knowledge.

These readers understand theme and author’s purpose. They use clues in the text to understand character traits and motives. They apply word analysis skills to recognize words and use strategies to determine the meaning of words in the text.

Readers who meet the Standards understand the use of a range of literary devices, including word choice, language structure, figurative language, and point of view.
Below Standards

Readers at the Below Standards level demonstrate basic knowledge and skills in reading. Although they have gaps in their learning, readers at this level apply their knowledge and skills in comprehending literary and informational texts having a clear purpose, simple language, and familiar style and structure.

Readers who are below the Standards demonstrate a basic understanding of the important ideas in the text and support their ideas with general information from the text and from their own experience. These readers identify and relate aspects of text structure to its overall meaning, recognize interpretations, and relate ideas in the text to their own experiences. They sometimes rely more on their own knowledge and ideas than on the text. They identify some explicit main ideas and important details and make simple generalizations about the main points.

These readers understand basic character traits and motives in uncomplicated literary passages. They order simple sequences of events and explain the relationships among the events. They apply word analysis skills and use context clues to determine the meaning of words in the text.

Readers who are below the Standards recognize basic literary elements and devices, including setting, point of view, conflict, foreshadowing, and flashback.

Academic Warning

Readers at the Academic Warning level demonstrate limited knowledge and skills in reading. Although readers at this level have major gaps in learning and apply knowledge and skills ineffectively, they demonstrate a general understanding of short, uncomplicated literary and informational texts that use basic vocabulary.

Readers at the Academic Warning level identify uncomplicated key concepts and simple details. They locate basic details at the sentence and paragraph level. They recognize basic text structures, such as memos, letters, poems, narratives, and instructions. They identify some explicit main ideas and locate some important details in the text.

These readers identify explicit character traits. They recognize the proper placement of items in a sequence of events and recognize simple cause-and-effect relationships. They detect the meaning of words defined within the text and infer the meaning of simple words not defined within the text.

Readers at the Academic Warning level recognize a few basic literary elements, such as setting, conflict, and plot.
Writing

The PSAE writing test consists of two components: ACT Assessment English and production of a single writing sample in response to an assigned prompt. These components assess the Illinois Learning Standards for writing contained in State Goal 3: usage, structure, grammar, and punctuation and the ability to compose coherent writing for specific audiences and for a variety of purposes.

The ACT Assessment English component uses a multiple-choice format in which students are expected to use standard English to edit documents for clarity, style, subject-verb agreement, adverb and adjective agreement, verb tense, and word choice and to proofread for correct usage, spelling, capitalization, and punctuation.

The writing assignment requires students to write one essay that is either a persuasive essay in which they take a position on a given issue or an expository essay in which they explain an assigned topic. All students write to the same prompt. The resultant writing sample is evaluated on how effectively the writer integrates focus, support, and organization to produce an effective paper. Focus is the clarity with which a paper presents and maintains a clear idea or point of view. Support is the degree to which the main point is backed up by specific reasons and details. Organization is the clarity of the logical flow of ideas and the explicitness of the text structure or plan. Organization has a vertical dimension, coherence, indicated by the use of paragraphing and transitions to signal the plan or structure of the text and a horizontal dimension, cohesion, evidenced by the connection of one sentence to the next.

Exceeds Standards

Student work at the Exceeds Standards level demonstrates advanced knowledge and skills in writing. Students creatively apply knowledge and skills to solve problems and evaluate the results that contribute to the development of focus, support, and organization in writing and editing.

Focus/Topic Development

Students whose performance exceeds the Standards demonstrate advanced knowledge of topic development by analyzing the influence sentences have in effectively developing, supporting, and maintaining the focus of the text or in reaching a more difficult purpose. They determine if the result of adding new sentences will accomplish a specific purpose, such as providing explanations or descriptions, and they determine when it is necessary to delete unrelated material that interferes with the focus of the text. Students apply knowledge of focus and purpose to a variety of texts of varying degrees of complexity. Students evaluate writing to determine if the sentences they use effectively maintain the focus and logic of the writing and successfully carry out its desired purpose and goal. They produce writing that displays sophistication in developing and maintaining focus and logic throughout through use of literary elements such as anecdotes.

Organization/Coherence

Students whose performance exceeds the Standards apply a complete understanding of how effective use of transitions influence organization and coherence of the text. For example, they include transitions that successfully maintain the logic of the text and improve sentence fluency. They demonstrate a clear understanding of the writing task and successfully employ strategies, such as repeating words, phrases, or supplying transitions, to develop and support their ideas in a sophisticated way that creates strong overall coherence and cohesion. They apply
these skills to develop writing that effectively incorporates strategies, such as examples, concrete
details, facts, summaries, or quotations, to develop introductions, succeeding paragraphs, and
closings that unify the writing.

Support/Word Choice/Sentence Structure

They generate documents that display extensive depth of detail, enhanced word choice,
and varied sentence structure. They produce writing that demonstrates sophisticated use of
analytical and evaluative thinking by successfully including material that is consistent in subject
and voice. They produce documents that exhibit a comprehensive understanding of the
successful use of sophisticated writing techniques, such as explanations and evidence, that are
appropriate to purpose and audience, and apply these techniques to develop and maintain clarity
of focus, logic, and organization. They successfully use techniques, such as varying sentence
structure, for stylistic effect.

Conventions/Usage/Punctuation

Students whose performance exceeds the Standards produce and edit a variety of texts in
a way that reflects comprehensive knowledge of sentence structure, usage, spelling,
capitalization, and punctuation. For example, they apply their knowledge of punctuation to
maintain the flow of sentences in the text. They apply basic rules of standard English in
sophisticated ways to edit documents for clarity, subject-verb agreement, adverb and adjective
agreement, and verb tense. They creatively apply these elements to create stylistic effect and
organizational power in their writing.

Meets Standards

Student work at the Meets Standards level demonstrates proficient knowledge and skills
in writing. Students effectively apply knowledge and skills that contribute to the development of
focus, support, and organization in writing and editing.

Focus/Topic Development

Students who meet the Standards demonstrate firm knowledge of topic development by
including sentences that appropriately develop and support focus of the text, such as expressing
meaning through connotation. They apply their knowledge of focus by using sentences that
support and maintain a general goal in the text. They avoid using sentences or phrases that
interfere with the clarity, development, or unity of the writing. These students produce
documents that contain an adequate quality and quantity of support of the topic. They apply
knowledge of focus to a variety of texts that are both familiar and unfamiliar in structure and that
use more challenging vocabulary. They produce texts that maintain clear logic throughout.

Organization/Coherence

Students who meet the Standards proficiently apply knowledge of effective transitioning
between sentences and paragraphs to produce cohesion and coherence. For example, they use
key words, repeated pronouns, or transitions to sufficiently build coherence and cohesion. They
demonstrate an understanding of the writing task and appropriately use a variety of strategies,
such as repeating words and phrases to provide appropriate support and develop coherence and
cohesion. They produce introductions that set the tone of the writing and develop closings that
bring it to a logical conclusion. They provide closings that contribute to the opening and the
main points.
Writing

Support/Word Choice/Sentence Structure
Students who meet the Standards use specific details, varied sentence structure, or word choice that is consistent with the tone and purpose of the essay. They produce documents that exhibit a proficient understanding of a range of writing techniques appropriate to purpose and audience, with clarity of focus, logic, and organization. They use compound or complex sentences to reorganize the sentences in a variety of texts. They attempt to apply this knowledge to create effect. For example, they use compound or complex sentences for varied sentence structure.

Conventions/Usage/Punctuation
Students who meet the Standards produce and edit work in a way that reflects well-defined knowledge of sentence structure, usage, spelling, punctuation, and capitalization. For example, these students apply consistent verb tense between sentences and maintain pronoun agreement in the text. They demonstrate accurate use of standard English to edit a piece of writing for clarity, subject-verb agreement, adverb and adjective agreement, and verb tense. They effectively apply the basic rules of standard English to maintain logic throughout a variety of texts. They demonstrate the ability to present ideas clearly, but they do so with less control than do students at the Exceeds Standards level.

Below Standards
Student work at the Below Standards level demonstrates basic knowledge and skills in writing. However, because of gaps in learning, students use knowledge and apply skills that contribute in limited ways to the development of focus, support, and organization in writing and editing.

Focus/Topic Development
Students who are below the Standards demonstrate a basic understanding of topic development by avoiding the use of sentences that clearly interrupt the focus of an essay. They demonstrate logic in ordering sentences in a simple piece of writing. They produce and edit texts that have a clear purpose, simple language, and familiar style and structure. These students demonstrate knowledge of focus in a limited way, such as by determining or maintaining the basic theme or topic of a simple piece of writing or including repetitious statements rather than separate ideas.

Organization/Coherence
Students who are below the Standards apply a basic understanding of the effect transitions have on coherence. They generate paragraphs using simple organizational patterns that may have inappropriate transitions but are coherent. For example, they maintain a simple beginning, middle, and end to the text. They use basic transitions between paragraphs to create coherence. They may use repetitious transitional words within paragraphs. Their writing often lacks cohesion.

Support/Word Choice/Sentence Structure
Students who are below the Standards identify general support and the context of an essay. For example, they produce writing that contains limited detail and elaboration and is often general in nature. They form ideas in a short and direct manner lacking specific details. They revise simple material to make it more readable, select logical conjunctions, and correct noticeable disturbances of sentence fluency and structure. They produce documents that include basic transitions between paragraphs and add transitional markers within the paragraphs of a straightforward essay. They produce writing that exhibits a basic understanding of the use of varied sentence structure to produce cohesion, such as using prepositions to begin a sentence.
Conventions/Usage/Punctuation
Students who are below the Standards demonstrate a general understanding of the basic rules of standard English, such as using commas to separate clauses in a compound sentence, editing a simple piece of writing for clarity, subject-verb agreement, adverb and adjective agreement, and verb tense. They apply basic conventions of language in a simple manner. They produce writing that contains errors in usage, spelling, capitalization, punctuation, and sentence structure, but these errors are not so substantial that meaning is completely obscured. They convey their ideas, but do not successfully apply grammar, usage, or mechanics to maintain complete logic in the text.

Academic Warning
Student work at the Academic Warning level demonstrates limited knowledge and skills in writing. Because of major gaps in learning, students use knowledge and apply skills ineffectively in writing and editing.

Focus/Topic Development
Students at the Academic Warning level demonstrate limited understanding of topic development. They add sentences to the writing that results in a drift from the focus or presents unrelated or illogical ideas. They produce and edit short, uncomplicated texts that contain simple vocabulary. They apply knowledge of focus in a simple manner to determine and maintain the basic theme or topic of a straightforward text.

Organization/Coherence
Students at the Academic Warning level demonstrate the ability to apply a limited knowledge of paragraphing, the use of transitions, and the structure of an essay. They organize ideas in simple formats such as lists, outlines, or summaries with limited and ambiguous support. They produce writing that exhibits poor organization or has serious omissions that results in a lack of coherence and cohesion.

Support/Word Choice/Sentence Structure
Students at the Academic Warning level provide support that often includes a list of specifics with little elaboration, or they include additional information that interferes with the focus of the text, or they include support that consists of repetitions or lacks clarity. These students use simple, everyday vocabulary to describe their ideas.

Conventions/Usage/Punctuation
Students at the Academic Warning level demonstrate limited knowledge with regard to usage, spelling, punctuation, capitalization, and sentence structure, but they provide appropriate punctuation in straightforward situations such as use of commas in a series and basic subject-verb agreement in simple sentences. These students may produce insufficient writing to demonstrate their abilities. They demonstrate a limited understanding of basic rules of standard English and use the language only in straightforward situations to edit writing for clarity, subject-verb agreement, adverb and adjective agreement, and verb tense, although they make an attempt to present their ideas. They apply this limited knowledge ineffectively resulting in confusion, lack of logic in the text, and obscure overall meaning.
Mathematics

The PSAE mathematics test consists of two multiple-choice assessments: ACT Assessment Mathematics and WorkKeys Applied Mathematics. The test measures the Illinois Learning Standards for mathematics contained in State Goals 6 through 10: number sense, measurement, algebra, geometry, and probability, statistics, and data analysis.

Exceeds Standards

Student mathematical work at the Exceeds Standards level demonstrates advanced knowledge and skills in mathematics as described in the following paragraphs. These students creatively apply their knowledge and skills to solve routine and non-routine problems and evaluate the results. They demonstrate a comprehensive, flexible, and widely applicable command of the mathematics found in the five State Goals.

Number Sense

Students whose number and operation work exceeds the Standards demonstrate a comprehensive, flexible, and widely applicable command of number, operations, and number sense. They demonstrate a deep understanding of the concepts, properties, and operational skills of both the real and complex number systems. These students represent real and complex numbers using coordinate and matrix forms. They apply mental mathematics skills and number facts and relationships in simplifying and evaluating numerical computations, as well as in making reasonable estimates and approximations involving multi-step real number computations. They easily compare and order real numbers in any form, including radicals and powers-integral or rational.

Students whose number and operation work exceeds the Standards determine appropriate use of roots, exponents, and logarithms in representing and computing with real numbers in symbolic and applied settings. These students extend non-routine numeric patterns, including arithmetic and geometric sequences, and produce applicable expressions and formulas to model the sequences, sums of terms, and related patterns.

Students whose number and operation work exceeds the Standards are fluent in their ability to deal with all forms of percentage problems, including exponential growth and decay in both business and scientific applications. They appropriately use graphing calculators and technology to investigate mathematical ideas. These students demonstrate highly developed problem-solving skills and the ability to use mathematical models to model and identify solutions for non-routine problems.

Measurement

Students whose measurement work exceeds the Standards construct and identify solutions for proportions in a wide variety of non-routine settings. They demonstrate a comprehensive, flexible, and widely applicable command of measurement. When appropriate, they know, apply, and modify formulas in a wide variety of theoretical and applied measurement applications involving perimeter, area, volume, angle, time, temperature, mass, speed, distance, density, and money. These students choose appropriate units and scales, including nonlinear ones, for problem situations involving scale drawings. They use units of measure (dimensional analysis) to set up problems and determine the appropriate unit for the answer. They convert measures within and between the standard and metric systems of measurement.

Students whose measurement work exceeds the Standards determine numerical answers having appropriate degrees of accuracy. They determine the area and perimeter of regular and
irregular two-dimensional figures. They find the volume and surface area of regular and irregular three-dimensional figures.

Students whose measurement work exceeds the Standards use ratio and proportion, including trigonometric ratios, to describe the measures of geometric figures. They determine the effect of a change in one measure (for example, side length) on other measures (such as area, volume, angle measure) in the same or related figures in two and three dimensions.

Algebra

Students whose algebraic work exceeds the Standards demonstrate a comprehensive, flexible, and widely applicable command of algebra. They use appropriate numerical, graphical, and algebraic representations to illustrate their work. They recognize and represent patterns with variables and develop and use expressions to find solutions for non-routine problems. They manipulate a wide range of equations, inequalities, and systems, both linear and nonlinear, in solving problems represented in algebraic form. They recognize, manipulate, simplify, and evaluate algebraic expressions involving both polynomial and rational forms.

Students whose algebraic work exceeds the Standards distinguish between relations and functions and perform appropriate operations on functions, including finding inverses and composition. They productively use tables, graphs, and algebraic expressions to represent functions and their related equations. They interpret the relative rates of change involved in linear, quadratic, and exponential settings.

Students whose algebraic work exceeds the Standards recognize, model, and apply direct \((y = kx)\) and inverse \((y = k/x)\) variation in representing and solving real-world problems. They model such real-world problems using logarithmic, exponential (growth and decay), and trigonometric functions and matrices.

Geometry

Students whose geometric work exceeds the Standards demonstrate a comprehensive, flexible, and widely applicable command of geometry. They know and apply the properties and theorems that characterize segments, angles, and lines in polygonal or circular figures in two and three dimensions. These students understand and apply theorems that describe the measures of congruent or similar figures in both two and three dimensions. They construct formal proofs and logical arguments for geometric statements.

Students whose geometric work exceeds the Standards use trigonometric relationships to determine measures in both right and non-right triangles. They apply coordinate geometry in non-routine problems to find distances, prove properties of geometric figures, and describe congruence or similarity in two- or three-dimensional settings. They use transformations to describe and investigate figures and relationships between them.

Probability, Statistics, and Data Analysis

Students whose analysis of data and chance settings exceeds the Standards demonstrate a comprehensive, flexible, and widely applicable command of probability, statistics, and data analysis. They correctly determine the probability or odds of events using counting principles, combinations, and permutations.

Students whose analysis of data and chance settings exceeds the Standards collect, organize, analyze, describe, and make predictions based on raw data. They formulate well-designed questions and describe appropriate data collection methods, gather and analyze data effectively, and communicate their findings concisely and clearly. They understand the role of randomization in surveys and models. They calculate and interpret appropriate measures of central tendency (mean, median, and mode) and variation (range, variance, and standard deviation). They find, graph, and interpret a line of best fit for a given set of data and analyze the relationship between the predicted and observed data. They distinguish between correlation
Mathematics

12

(events that are unrelated) and causation (events that are related).

Meets Standards

Student mathematical work at the Meets Standards level demonstrates proficient knowledge and skills in mathematics as described in the following paragraphs. These students effectively apply their knowledge and skills to solve mathematics problems in the five State Goals.

Number Sense

Students whose number and operation work meets the Standards demonstrate a proficient command of number, operations, and number sense and apply it in a variety of settings. These students know and use the operational skills and the related properties of real numbers. Their capabilities with mental mathematics skills and recall of number facts in simplifying and evaluating algebraic number forms is strong, especially when supported by the use of technology. They make reasonable estimates involving one-step real number computations and make appropriate approximations for the basic operations. They compare and order real numbers in fraction, decimal, or radical form.

Students whose number and operation work meets the Standards form numerical representations for real numbers and real number operations using powers, square and cube roots, scientific notation, absolute value, and various forms of fractional and decimal formats. They extend simple number patterns and find general terms based on arithmetic or geometric sequences.

Students whose number and operation work meets the Standards construct and identify solutions for proportions in a variety of settings, including most forms of percentage problems. They use graphing calculators and other technology to investigate mathematical ideas. These students apply problem-solving skills to familiar situations or situations that moderately extend what they have seen before.

Measurement

Students whose measurement work meets the Standards demonstrate a proficient command of measurement and apply it in a variety of settings. They select and apply appropriate formulas in a variety of contextual measurement situations involving perimeter, area, volume, angle, time, temperature, distance, and money when all the necessary information is provided. These students choose appropriate linear units and scales for problem situations, including the setting up and identification of solutions for problems involving scale drawings. They find numerical answers for measurement problems to a stated degree of accuracy. They convert measures within the metric and standard systems of measurement.

Students whose measurement work meets the Standards determine the area and perimeter of common two-dimensional geometric figures in the plane. They calculate similar measures for irregular figures composed of common regular figures. They compute the volume and surface area of common three-dimensional figures when the relevant formulas are provided.

Students whose measurement work meets the Standards use ratio and proportion to describe how a change in one measure (for example, side length) affects other measures (such as area or volume) in similar shapes or solids.

Algebra

Students whose algebraic work meets the Standards demonstrate a proficient command of algebra and apply it in a variety of settings. They construct and identify solutions for linear equations, inequalities, and systems of linear equations using appropriate numerical, graphical, or algebraic methods. These students simplify and evaluate linear and quadratic algebraic expressions. They identify solutions for quadratic equations through the use of numerical and
graphical approaches, factoring, or the quadratic formula. They also identify solutions for simple exponential equations.

Students whose algebraic work meets the Standards identify and use linear, quadratic, and exponential functions in familiar settings. They describe functional relationships using tables, graphs, and algebraic symbolism. Given a tabular, graphical, or algebraic representation of a linear function, they determine its slope and intercepts.

Students whose algebraic work meets the Standards identify and apply direct and inverse variation. They create an algebraic expression or equation to model and identify solutions for contextual problems similar to those they have seen before.

Geometry

Students whose geometric work meets the Standards demonstrate a proficient command of geometry concepts and properties and apply them in a variety of settings. These students know and apply theorems involving segment lengths and angle measurements in triangles, special quadrilaterals (squares, rectangles, rhombuses, and parallelograms), circles, and regular polygons. They also apply theorems relating the measures of congruent or similar figures in the plane. They apply knowledge about the slopes of parallel and perpendicular lines. They construct convincing inductive or deductive arguments for generalizations involving concepts from the geometry and algebra curricula.

Students whose geometric work meets the Standards use the Pythagorean theorem, special triangles (for example, 30°-60°-90° and 45°-45°-90°), and the basic trigonometric functions (sine, cosine, and tangent) to determine measurements in right triangles. They use coordinate geometry to find the midpoint of a segment and the distance between two points in the plane. These students identify and perform straightforward geometric transformations (for example, slides, reflections, and rotations).

Probability, Statistics, and Data Analysis

Students whose analysis of data and chance settings meets the Standards demonstrate a proficient command of probability, statistics, and data analysis and apply it in a variety of settings. They understand and apply basic counting principles. These students determine the probability of simple, dependent, independent, and compound events. They determine the odds for simple events and detect when outcomes do not match expected patterns.

Students whose analysis of data and chance settings meets the Standards represent data graphically using a variety of methods: scatter plots, stem-and-leaf plots, box-and-whisker plots, histograms, circle graphs, line graphs, and frequency tables and make predictions from such representations. They formulate questions, design data collection methods for specified problems, gather and analyze data, and communicate findings. These students make predictions and form conjectures from organized data. These students calculate and interpret measures of central tendency (mean, median, and mode) and dispersion (range). They find and graph a line of best fit using technology when appropriate. These students make decisions based on data, determining if the relationship of cause and effect applies or not.

Below Standards

Student mathematical work at the Below Standards level demonstrates basic knowledge and skills in mathematics. However, because of gaps in their learning, students apply their knowledge and skills to solve mathematics problems in limited ways in the five State Goals.

Number Sense

Students whose number and operation work is below the Standards demonstrate basic knowledge of number, operations, and number sense and apply that knowledge only in routine problems. Their number sense and operational skills are limited to common fractions and
Mathematics

decimals (common real numbers). They demonstrate basic mental mathematics skills, and their recall and use of number facts is insufficient for consistent simplification and evaluation of algebraic number forms. They compare and order numbers in decimal and fraction form but have difficulty doing this when the fractions have unlike denominators.

Students whose number and operation work is below the Standards form reasonable estimates that involve common fractions and decimals. They identify equivalent numerical representations of common fractions and decimals. However, their ability to extend simple number patterns is limited to finding additional terms of the patterns.

Students whose number and operation work is below the Standards construct proportions to fit simple contextual settings. They identify solutions for direct one-step percentage problems but demonstrate difficulty dealing with percents of increase and decrease. They use calculators to investigate simple patterns but demonstrate limited knowledge of special function keys and how to interpret scientific notation output. They demonstrate a basic understanding of problem solving and only apply such skills in situations where explicit instruction has been provided.

Measurement

Students whose measurement work is below the Standards demonstrate basic knowledge of measurement and apply that knowledge only in routine problems. They apply a given formula in common measurement situations involving perimeter, area, time, temperature, and money when all the necessary information is provided. These students demonstrate difficulty choosing appropriate linear units for simple problem situations involving measurement and demonstrate a limited ability to identify solutions for problems involving scale drawings, ratio, and proportion. They demonstrate difficulty determining answers to a stated degree of accuracy and converting basic measures within the metric and standard systems of measurement.

Students whose measurement work is below the Standards compute the area and perimeter of common two-dimensional geometric figures in the plane when the formulas are given. However, they may confuse the concepts of area and perimeter. Their ability to compute either the volume or surface area of common three-dimensional figures when the formulas are given is limited. In many cases, they may confuse the concepts of volume and surface area.

Students whose measurement work is below the Standards may recognize that changing one measure in a figure (for example, side length) affects other measures (such as area) in similar shapes, but are unable to describe the exact numerical nature of the change.

Algebra

Students whose algebraic work is below the Standards demonstrate basic knowledge of algebra and apply that knowledge only in routine problems. They identify solutions for some simple two-step linear equations (for example, $2x + 4 = 8$) and most one-step equations (for example, $x + 4 = 8$) whose coefficients are positive integers. However, they demonstrate a limited ability to identify solutions for one- or two-step equations when the coefficients are negative integers, fractions, or decimals.

Students whose algebraic work is below the Standards may use linear functions as models but demonstrate a limited ability to apply quadratic functions. They determine the general sign (positive or negative) of the slope of a line from graphical representations but demonstrate a limited ability to compute the slope when given the coordinates of two points on the line. These students evaluate simple algebraic expressions. They also identify simple linear relationships from tables, graphs, or algebra using technology when appropriate.

Students whose algebraic work is below the Standards recognize simple direct and inverse variations but demonstrate difficulty determining the constant of variation. They do not create algebraic models for contextual problems beyond those that they have studied and drilled on in their classes.
Geometry

Students whose geometric work is below the Standards demonstrate basic knowledge of geometry and apply that knowledge only in routine problems. They demonstrate a limited ability to apply properties involving angles, segments, polygons, or circular figures. While they identify parallel and perpendicular lines, they demonstrate difficulty describing their properties in either geometric or algebraic (slope) terms. These students state the major theorems about the corresponding measures of congruent or similar figures but demonstrate difficulty applying them. They follow a simple, logical argument but demonstrate a very limited ability to construct a convincing argument involving a geometric or algebraic situation.

Students whose geometric work is below the Standards use the Pythagorean theorem to find the hypotenuse of a right triangle; but demonstrate limited ability using it in other settings. Their knowledge of coordinate geometry and their use of ordered pairs to represent geometric concepts is limited to little more than plotting or locating points on a coordinate grid.

Probability, Statistics, and Data Analysis

Students whose analysis of data and chance settings is below the Standards demonstrate basic knowledge of probability, statistics, and data analysis and apply that knowledge only in routine problems. They determine the probability of straightforward, simple events (for example, a single coin toss). However, they do not deal with compound or conditional events. They detect cases in which simple outcomes do not match expected patterns.

When given specific directions, these students gather, describe, and analyze a set of data. They interpret data presented via a simple bar, circle, or line graph. They form and communicate direct inferences from a set of displayed data. They calculate the mean, median, mode, and range for a simple data set but demonstrate difficulty comparing and contrasting the meanings of such measures.

Academic Warning

Student mathematical work at the Academic Warning level demonstrates limited knowledge of concepts and skills in mathematics. Because of major gaps in their conceptual and procedural understanding of mathematics, they apply their knowledge and skills to solve mathematics problems ineffectively in the five State Goals.
Number Sense
Students whose number and operation work is at the Academic Warning level demonstrate limited knowledge of number, operations, and number sense and are unable to apply that knowledge in solving problems. These students have major gaps in their conceptual and procedural understanding of number sense. Their operational abilities with numbers are limited to the basic operations of addition, subtraction, multiplication, and division of whole numbers, common fractions, and familiar decimals. Their mental mathematical skills and recall of number facts in simplifying and evaluating algebraic number forms is limited. They compare and order whole numbers, fractions with like denominators, and decimals rounded to the same place value.

Students whose number and operation work is at the Academic Warning level do not form or recognize reasonable estimates involving fractions or decimals. They do not determine appropriate numerical representations or equivalencies for common fractions or decimals. These students are limited in their ability to extend numeric patterns to those based on addition and subtraction.

Students whose number and operation work is at the Academic Warning level demonstrate difficulty constructing proportions or completing one-step percentage problems. Their ability to solve a simple proportion is limited. They need the assistance of calculators or other technology to perform calculations beyond the most basic of computations. Their problem-solving skills are limited to the most basic of daily life applications of number, operation, and number sense.

Measurement
Students whose measurement work is at the Academic Warning level demonstrate limited knowledge of measurement and do not apply that knowledge in solving problems. These students demonstrate major gaps in their conceptual and procedural understanding of measurement. They apply a given formula in simple contexts involving the perimeter or area of rectangles and right triangles when all the necessary information is given. However, such students experience difficulty using other formulas or dealing with measurements involving volume, time, temperature, and money. They choose inappropriate units or scales for problem situations involving measurement. They do not interpret approximations or round measurements to a stated degree of accuracy. These students recognize units within the metric and standard systems of measurement but do not convert measurements within the systems with any degree of consistency.

Students whose measurement work is at the Academic Warning level confuse area and perimeter of simple two-dimensional geometric figures and demonstrate little concept of the volume or surface area of simple three-dimensional figures. These students also confuse facts related to measurements in polygons and circles.

Students whose measurement work is at the Academic Warning level may fail to recognize that changing one measure in a figure (for example, side length) affects other measures (such as area) in similar shapes.
Mathematics

Algebra

Students whose algebraic work is at the Academic Warning level demonstrate limited knowledge of algebra and do not apply their knowledge in solving problems. These students demonstrate major gaps in their conceptual and procedural understanding of algebra. They do not evaluate algebraic expressions correctly and make errors of order of operation or with the signs of numbers when they attempt to do so. They demonstrate a limited ability to identify solutions for even one-step equations.

Students whose algebraic work is at the Academic Warning level do not consistently identify, interpret, or apply linear functions. They demonstrate little or no ability to interpret or manipulate quadratic expressions or equations. They demonstrate limited ability to work with simple linear relationships using either tables or graphs.

Students whose algebraic work is at the Academic Warning level do not identify or use simple direct and inverse variation. They do not apply algebraic models to represent or identify solutions for a contextual problem.

Geometry

Students whose geometric work is at the Academic Warning level demonstrate limited knowledge of geometry and do not apply that knowledge in solving problems. These students recognize parallel or perpendicular lines, but do not state or apply properties concerning them. They demonstrate difficulty identifying or discriminating between congruent or similar figures, especially when asked to find the measures of corresponding parts. They do not follow a simple logical argument.

Students whose geometric work is at the Academic Warning level graph points on a coordinate grid or interpret data presented in such a fashion ineffectively. They are ineffective in using the Pythagorean theorem or any other method to determine indirect measurement or evaluate geometric expressions involving powers or roots.

Probability, Statistics, and Data Analysis

Students whose analysis of data and chance settings are at the Academic Warning level demonstrate limited knowledge of probability, statistics, and data analysis and do not apply that knowledge in solving problems. These students demonstrate major gaps in their conceptual and procedural understanding of probability, statistics, and data analysis. They demonstrate only an informal understanding of the probability of simple events, and they rarely detect when outcomes do not match expected patterns.

Students whose analysis of data and chance settings are at the Academic Warning level interpret data from a simple bar graph. They discuss a data set only when asked simple, direct questions. When given specific directions, they demonstrate, often with great difficulty, how to gather, represent, and interpret data for a simple set of questions. Conclusions that they draw based on a simple set of data and its representations are of mixed validity. These students often do not calculate the mean, mode, median, and range for a simple set of data.
Science

The PSAE science test consists of two multiple-choice assessments: ACT Assessment Science Reasoning and an ISBE-developed science assessment. The test measures the Illinois Learning Standards for science contained in State Goals 11 through 13: scientific inquiry, the life sciences, physical sciences, Earth and space sciences, and concepts that describe the interaction between science, technology, and society.

Exceeds Standards

Student work at the Exceeds Standards level demonstrates advanced knowledge and skills in science. Students creatively apply knowledge and skills to solve problems and evaluate results.

Scientific Inquiry

Students whose performance exceeds the Standards formulate effective hypotheses and design procedures to test hypotheses. They understand how systematic controlled experiments are designed and properly apply statistical methods to show the accuracy of experimental results. These students identify a design problem, select criteria for a successful solution, and build and test different potential design solutions. They modify or refine a model in a manner that improves its design and identify criteria to evaluate the design solution.

Life Sciences

Students whose performance exceeds the Standards demonstrate an understanding of how genetic combinations and mutations produce visible effects and variations to the physical features and cellular functions of organisms. They recognize the structure and organization of living things and how they respond to external stimuli. They understand the significance of evidence that organisms have evolved over time, including the fossil record, vestigial organs, and phylogenetic trees. They understand and identify the abiotic and biotic factors that lead to extinction and speciation. They understand and predict how life forms adapt to changes in the environment and how adaptation affects the size and stability of a population.

Physical Sciences

Students whose performance exceeds the Standards demonstrate a good understanding of physical science concepts, such as atomic and nuclear theory, force, momentum and its conservation, mass, energy and its transformations, light, and sound. They analyze reactions, the properties of materials, the relative motion of objects, and the effects of the fundamental forces on physical systems. They make connections between classroom activities and real life situations.

Earth and Space Sciences

Students whose performance exceeds the Standards demonstrate an understanding of forces, events, and processes that affect Earth, including the origin and dynamic nature of Earth, such as plate tectonics and the related areas of earthquakes and volcanism; weather and climatic events; and the geologic history of Earth, such as rocks, minerals and fossils. They use these principles to analyze systems in the universe. They identify and describe objects in the solar system, such as the planets, their moons, asteroids, and comets, and make connections among them.
Science, Technology, and Society

Students whose performance exceeds the Standards are well aware of the applications and implications of laboratory safety. They understand the criteria that scientists use to evaluate the validity of scientific claims and theories. These students explain the strengths, weaknesses, and uses of research methodologies. They understand why experimental replication and peer reviews are necessary for scientific claims. These students analyze the political ramifications of scientific and technological advancements, such as nuclear weapons, biological and chemical warfare, and biotechnology. With little assistance, these students design environmental impact studies and analyze cost benefits and effects of scientific policies at the local, national, and global levels. These students identify and evaluate the connections between scientific progress and careers, job markets, and other aspects of everyday life, such as the economic impact of these connections.

Meets Standards

Student work at the Meets Standards level demonstrates proficient knowledge and skills in science. Students effectively apply knowledge and skills to solve problems.

Scientific Inquiry

Students who meet the Standards formulate acceptable hypotheses and demonstrate an understanding of the basic concepts of design procedures to test hypotheses. They understand how systematic controlled experiments are designed and the basic concepts of applying statistical methods to assess results. These students identify major experimental design problems, select criteria for a successful solution, and choose the best of different potential design solutions. They modify a model to improve its design and identify some criteria to evaluate the design solution.

Life Sciences

Students who meet the Standards demonstrate a basic understanding of how genetic combinations and mutations produce visible effects and variations to the physical features and cellular functions of organisms. They understand how organisms respond to external stimuli and identify basic structures and organization of living things. They understand the significance of evidence that organisms have evolved over time, including the fossil record, vestigial organs, and phylogenetic trees. They identify the abiotic and biotic factors that lead to extinction and speciation. They identify or predict basic mechanisms by which life forms adapt to changes in the environment and demonstrate a basic understanding of how adaptation affects the size and stability of a population.

Physical Sciences

Students who meet the Standards demonstrate a basic understanding of physical science concepts, such as atomic and nuclear theory, force, momentum and its conservation, mass, energy and its transformations, light, and sound. They analyze reactions, the properties of materials, the relative motion of objects or the effects of the fundamental forces on physical systems. They make connections between classroom activities and real life situations.

Earth and Space Sciences

Students who meet the Standards demonstrate a general understanding of most large-scale dynamic forces, events, and processes of Earth’s systems (for example, the origin and dynamic nature of Earth, such as plate tectonics and the related areas of earthquakes and volcanism; weather and climatic events, and the geological history of the earth, including rocks, minerals, and fossils). They analyze the systems and components of the universe. They demonstrate a basic understanding of how geologic and astronomical events, such as earthquakes, weathering, meteor impacts, and super novas, occur and the effects of these events. They identify and demonstrate familiarity with common objects in the solar system, such as
Science

planets, moons, meteors, and comets, and demonstrate a general understanding of the relationships among them.

Science, Technology, and Society

Students who meet the Standards demonstrate awareness of the most basic applications and implications of laboratory safety. They demonstrate a basic understanding of the criteria that scientists use to evaluate the validity of scientific claims or theories. They explain the strengths, weaknesses and uses of uncomplicated research methodologies. They demonstrate a basic understand of the necessity for experimental replication and peer reviews to support scientific claims. These students demonstrate sufficient knowledge to analyze the political ramifications of familiar scientific and technological advancements, such as nuclear weapons, biological and chemical warfare, and biotechnology. These students understand the basic principles underlying environmental impact studies, cost-benefits analyses, and effects of scientific policies at the local, national, and global levels. These students identify uncomplicated connections between scientific progress and careers, job markets, and other aspects of everyday life.

Below Standards

Student work at the Below Standards level demonstrates basic knowledge and skills in science. However, because of gaps in learning, students apply knowledge and skills in limited ways.

Scientific Inquiry

Students who do not meet the Standards demonstrate an understanding of simple hypotheses and design procedures for simple hypotheses. They understand systematic controlled experiments and how to apply statistical methods for simple experiments. They identify some design problems, select some criteria for a successful solution, and identify potential design solutions for simple experiments. They modify a simple model in a manner that improves its design and identify some criteria to evaluate the design solution.

Life Sciences

Students who do not meet the Standards demonstrate a rudimentary understanding of how genetic combinations and mutations produce visible effects and variations in the physical features and cellular functions of organisms. They demonstrate a limited understanding of how organisms respond to external stimuli. They identify the basic structures and organization of living things. They understand the significance of some of the evidence that organisms have evolved over time, such as the fossil record and phylogenetic trees. They identify some of the most common abiotic and biotic factors that lead to extinction and speciation. They describe or predict how life forms adapt to clearly defined changes in the environment and the relationship between these changes and the size and stability of a population.

Physical Sciences

Students who do not meet the Standards demonstrate an elementary understanding of physical science concepts, such as atomic and nuclear theory, force, momentum and its conservation, mass, energy and its transformations, and light and sound. They analyze simple reactions, the properties of common materials, the relative motion of objects, and the effects of the fundamental forces on physical systems. They make rudimentary connections between classroom activities and real life situations.

Earth and Space Sciences

Students who do not meet the Standards demonstrate a rudimentary understanding of large-scale dynamic forces, events, and processes of Earth’s systems, such as the origin and dynamic nature of Earth, including plate tectonics and the related areas of earthquakes and volcanism; weather and climatic events; and the geological history of the earth, including an
understanding of rocks, minerals and fossils. They identify objects in the solar system, such as planets, stars, and comets, but do not understand relationships among them. For example, they may have some recognition that our solar system is a component of the Milky Way Galaxy but do not explain its position in the galaxy.

Academic Warning

Student work at the Academic Warning level demonstrates limited knowledge and skills in science. Because of major gaps in learning, students apply knowledge and skills ineffectively.

Scientific Inquiry

Students at the Academic Warning level demonstrate difficulty trying to formulate simple hypotheses and immense difficulty in designing procedures to test hypotheses. These students have reading difficulties that limit their ability to read for content meaning and usually demonstrate mathematical difficulties that limit their attempts to apply statistical methods. In group-learning situations where a teacher or mentor is guiding the study, these students sometimes identify a design problem, select criteria for a successful solution, or build and test different potential design solutions. If they are prompted numerous times during a systematic, controlled experiment, they are sometimes somewhat successful.

Life Sciences

Students at the Academic Warning level may be able to demonstrate understanding of simple genetic crosses but rarely understand the principles of genetic combinations and mutations that produce visible effects and variations of the physical features or cellular functions of organisms. They describe how organisms respond to external stimuli if they have observed such responses, but these students do not generally provide factual reasons for responses outside the realm of their experiences. Students describe some structural parts of organisms but generally do not attempt to place the total structure or organization of living things in perspective. These students may attempt to identify evidence that organisms have evolved over time but give no conceptual explanation of fossil records, vestigial organs, or phylogenetic trees. These students rarely describe or identify the abiotic and biotic factors that lead to extinction and speciation. While these students may notice observable changes, they not explain or predict how life forms adapt to changes in the environment that affect the size and stability of the population.

Physical Sciences

Students at the Academic Warning level demonstrate comprehension of the concept of elements and the ability of elements to combine to form compounds. They describe rudimentary physical phenomena they observe but demonstrating little understanding of basic physical science concepts, such as atomic and nuclear theory, bonding forces, energy, light, and sound. They do not analyze reaction mechanisms, the properties of materials, the relative motion of objects, or the effects of the fundamental forces. It is extremely difficult for these students to make connections between classroom activities and real life situations or to later recall these associations.

Earth and Space Sciences

Students at the Academic Warning level may demonstrate understanding of isolated concepts about phenomena such as eclipses, tornados, earthquakes, or droughts. However, they demonstrate little if any understanding of the connections between large-scale dynamic forces, events, and processes that affect Earth’s systems, such as the origin and dynamic nature of Earth, plate tectonics, and the related areas of earthquakes and volcanism, weather and climatic events; and the geologic history of the earth, including an understanding of rocks, minerals, and fossils. They identify pictures of Earth, the moon, and the sun but do not explain the concept of the
Science

Milky Way Galaxy, the life cycles of stars or planets, and the place of Earth in the broad picture.

Science, Technology, and Society

Students at the Academic Warning level need constant reminders of the applications and implications of laboratory safety. They do not demonstrate comprehension of the main criteria that scientists use to evaluate the validity of scientific claims or theories. These students do not analyze political ramifications of common scientific and technological advancements, such as nuclear weapons, biological and chemical warfare, or biotechnology. They do not make connections between scientific progress and careers, job markets, and other aspects of everyday life.
Social Science

The PSAE social science test is a multiple-choice assessment that measures the Illinois Learning Standards contained in State Goals 14 through 18: political systems; economic systems; events, trends, individuals, and movements shaping the history of Illinois, the United States, and other nations; world geography and the effects of geography on society; and social systems.

Exceeds Standards

Student work at the Exceeds Standards level demonstrates advanced knowledge and thorough mastery of the skills of the social science disciplines. These students creatively apply their knowledge and skills within and across disciplines to solve problems and forge comprehensive, evaluative judgments. They demonstrate well-developed analytic, synthetic, and evaluative skills that can be applied to a variety of contexts.

Political Systems

Students whose performance exceeds the Standards analyze the relationships between the roles and responsibilities of local, state, and national governments and the public goods and services each provide. They explain and compare the purpose of rules and laws and their impact on citizens. Students at this level demonstrate a clear understanding of how rights and responsibilities are grounded in the principle of limited government as expressed by the federal and state constitutions and the Declaration of Independence. They compare how and why the participation of individuals and groups in elections and other public actions has changed over time. Students whose performance exceeds the Standards evaluate the impact of media and lobbyists on public policy at a variety of government levels. They form generalizations about causes and consequences of such activities. They evaluate relationships between the United States and a variety of other nations and between the United States and international organizations. They compare and evaluate the origin of significant political ideas and traditions to those that are found in the United States today. They demonstrate an advanced understanding of the causes of change, such as the dissolution of monarchies, the expansion of participatory democracy, and the extension of civil rights, in political systems.

Economic Systems

Students whose performance exceeds the Standards analyze and explain how national economies vary in the extent that government and private markets help allocate goods, services, and resources. They explain and analyze the relationship between productivity and wages. These students analyze graphs, charts, and other sources of data to draw reasoned conclusions. They identify the meaning and explain the importance of the balance of trade and how trade surpluses and deficits between nations are determined. They analyze reasons why government policies and laws affecting the economy, such as tariffs, taxes, and environmental regulations, have changed over time. They demonstrate an advanced understanding of economic concepts, such as depression, unemployment, inflation, and capital.

History

Students whose performance exceeds the Standards analyze historical events to identify cause-and-effect relationships. They compare and evaluate competing historical interpretations of an event. Students whose performance exceeds the Standards analyze historical and contemporary developments using methods of historical inquiry. They analyze and develop the relationships among an event, where it took place, and its time period. They compare and analyze institutions, customs, and traditions that have characterized past societies and the effect of these upon society today.
Geography

Students whose performance exceeds the Standards use maps, globes, and other geographic representations and tools to answer complex geographic questions. They analyze human interaction with the environment and how the physical and human characteristics of a region change over time. They discern and evaluate the potential consequences of a variety of human interaction with the environment in a geographic context. They analyze and evaluate data that supports appropriate alternative causes and consequences of actions.

Social Systems

Students whose performance exceeds the Standards analyze and evaluate the influence of cultural factors, including customs, traditions, language, media, art, and architecture, in the development of pluralistic societies. These students analyze various forms of institutions and major cultural exchanges of the past. They analyze the influence of worldwide communications on major contemporary cultural.

Meets Standards

Student work at the Meets Standards level demonstrates proficient knowledge and mastery of the essential skills of the social science disciplines. These students apply their knowledge and skills within and across disciplines to identify problems and make limited analytic comparisons and judgments. They are developing analytic, synthetic, and evaluative skills that they apply to a limited number of contexts.

Political Systems

Students whose performance meets the Standards analyze the relationships between the roles and responsibilities of local, state, and national governments and the public goods and services each provide. They explain and compare the purpose of rules and laws. Students at this level demonstrate an understanding of how rights and responsibilities are grounded in the principle of limited government as expressed by the federal and state constitutions and the Declaration of Independence. They demonstrate an understanding of how the participation of individuals and groups in elections and other public actions has changed over time. They identify and explain the impact of media and lobbyists on public policy. They describe relationships between the United States and other nations and between the United States and international organizations. These students explain the origin of significant political ideas and traditions that are found in the United States. They explain the causes of change over time in political systems, such as the dissolution of monarchies, the expansion of participatory democracy, and the extension of civil rights.

Economic Systems

Students whose performance exceeds the Standards explain how national economies vary in the extent that government and private markets help allocate goods, services, and resources. They identify the relationship between productivity and wages. They demonstrate an understanding of graphs, charts, and other sources of data and draw some reasonable conclusions. These students explain the meaning and importance of the balance of trade, how trade surpluses and deficits between nations are determined, and how government policies and laws affecting the economy, such as tariffs, taxes, and environmental regulations, have changed over time. They demonstrate an understanding of basic economic concepts such as depression, unemployment, inflation, and capital.

History

Students who meet the Standards analyze historical events to determine cause-and-effect relationships. They compare competing historical interpretations of an event. Students who meet the Standards explain historical and contemporary developments using methods of historical
inquiry. They analyze the relationships between an event, where it took place, and its time period. They identify institutions, customs, and traditions that have characterized past societies.

Social Science

Geography

Students who meet the Standards use maps, globes, and other geographic representations and tools to answer complex geographic questions. These students demonstrate an understanding of specific instances of human interaction with the environment and how the physical and human characteristics of a region change over time.

Social Systems

Students who meet the Standards explain the influence of cultural factors such as customs, traditions, language, media, art, and architecture in the development of pluralistic societies. They explain various forms of institutions and major cultural exchanges of the past. They demonstrate an understanding of how major contemporary cultural exchanges are influenced by worldwide communications.

Below Standards

Student work at the Below Standards level demonstrates a basic mastery of the knowledge and skills of the social science disciplines. However, because of gaps in their learning, these students apply their knowledge and skills in limited ways within and across disciplines. They seldom use comparisons and generalizations to form judgments or develop opinions. These students lack the analytic, synthetic, and evaluative skills to apply to a variety of contexts.

Political Systems

Students whose performance is below the Standards differentiate between local, state, and national offices and the public goods and services governments provide, but they do not demonstrate clear understanding of the roles and responsibilities of each. They explain the function of rules and laws, but demonstrate difficulty in analyzing the purpose of the law. These students identify some of their rights and responsibilities and the sources of their rights, but lack a clear understanding of the principles of limited government expressed in the federal and state constitutions and the Declaration of Independence. Students performing below the Standards do not identify or explain how the participation of individuals and groups in elections has changed over time. They identify the main impact of media and lobbyists on public policy. They demonstrate an unclear understanding of the relationships between the United States and other nations and between the United States and international organizations. Students at the Below Standards level identify the origin of significant political ideas and traditions that are found in the United States. They demonstrate only a rudimentary understanding of the causes of change, such as the dissolution of monarchies, the expansion of participatory democracy, and the extension of civil rights, in political systems.

Economic Systems

Students whose performance is below the Standards identify some of the major mechanisms causing national economies to vary the extent that government and private markets help allocate goods, services, and resources. These students demonstrate only partial and rudimentary understanding of the relationship between productivity and wages. They draw limited conclusions from graphs, charts, and other sources of data. They demonstrate a limited understanding of the meaning and importance of the balance of trade and how trade surpluses and deficits between nations are determined. They identify only well-known examples of how government policies and laws affecting the economy, such as tariffs, taxes, and environmental regulations, have changed over time and of basic economic concepts, such as depression, unemployment, inflation, and capital.
Social Science

History
Students whose performance is below the Standards identify some historical events to determine cause-and-effect relationships. They describe simplistic, competing historical interpretations of an event and identify a few competing historical interpretations of an event. Students performing at the Below Standards level identify the relationship between an event, where it took place, and its time period. They identify only a few of the institutions, customs, and traditions that have characterized past societies.

Geography
Students whose performance is below the Standards use maps, globes, and other geographic representations and tools to answer geographic questions. They identify common examples of human interaction with the environment. They demonstrate basic understanding of how the common physical and human characteristics of a region change over time.

Social Systems
Students who are performing below the Standards identify the influence of cultural factors that are personally familiar to them, including customs, traditions, language, media, art, and architecture in developing pluralistic societies. They identify some of the more well-known forms of institutions and major cultural exchanges of the past. Students performing at the Below Standards level identify some of the major contemporary cultural exchanges as influenced by worldwide communications.

Academic Warning
Student work at the Academic Warning level demonstrates limited mastery of the knowledge and skills of the social science disciplines. Because of major gaps in their learning, these students apply their knowledge and skills ineffectively within and across disciplines to solve problems. Comparisons and generalizations are seldom used to form judgments or develop opinions. They lack both knowledge and analytic, synthetic, and evaluative skills.

Political Systems
Students whose performance is at the Academic Warning level do not differentiate between local, state, and national offices and the public goods and services governments provide. They explain the function of some rules and laws but encounter difficulty in explaining the purpose of the law. Students at this level demonstrate knowledge of some of their rights and responsibilities but identify the sources of only some of these rights. They do not demonstrate a clear understanding of how individual and group participation in elections has changed over time. They do not demonstrate a clear understanding of the impact of media and lobbyists on public policy. They describe relationships between the United States and other nations or between the United States and international organizations only in basic, simplistic terms. They identify only a few of the major political ideas and traditions that are found in the United States and do not demonstrate understanding of the origin of most traditions. They demonstrate only a rudimentary understanding of the causes of change, such as the dissolution of monarchies, the expansion of participatory democracy, and the extension of civil rights, in political systems.

Economic Systems
Students at the Academic Warning level demonstrate a rudimentary understanding of how national economies vary in the extent that government and private markets help allocate goods, services, and resources. They do not explain the relationship between productivity and wages. They draw some conclusions from simple graphs, charts, or other sources of data. They identify only a few major examples of economic interdependence, such as investment, trade, and use of technology, in a global economy. Most students performing at the Academic Warning level do not demonstrate a clear understanding of the meaning and importance of the balance.
of trade and how trade surpluses and deficits between nations are determined. They do not identify basic economic concepts, such as depression, unemployment, inflation, and capital.

History

Students who perform at the Academic Warning level explain only the most obvious significance of well-known historical events in determining cause-and-effect relationships. They identify few historical and contemporary developments and do not demonstrate an understanding of methods of historical inquiry. They demonstrate only simplistic understand of the relationship between well-known historical events, where they took place, and their time period. They identify few institutions, customs, and traditions that have characterized past societies.

Geography

Students at the Academic Warning level use maps, globes, or other geographic representations or tools, but based on their use answer only straightforward geographic questions. They identify some well-known examples of human interaction with the environment. They demonstrate only a rudimentary understanding of how the physical and human characteristics of a region change over time.

Social Systems

Students at the Academic Warning level identify a few everyday examples of the influence of cultural factors including customs, traditions, language, media, art, and architecture in developing pluralistic societies. They do not demonstrate a clear understanding of the various forms of institutions, major cultural exchanges of the past, or major contemporary cultural exchanges as influenced by worldwide communications.