The 5 Formative Assessment Strategies to Improve Student Learning

In Dylan Wiliam’s new book, *Embedded Formative Assessment*, he provides the 5 strategies that he has come to believe are core to successful formative assessment practice in the classroom:

1. **Clarifying, sharing, and understanding learning intentions and criteria for success** – getting the students to really understand what their classroom experience will be and how their success will be measured.

2. **Engineering effective classroom discussions, activities, and learning tasks that elicit evidence of learning** – developing effective classroom instructional strategies that allow for the measurement of success.

3. **Providing feedback that moves learning forward** – working with students to provide them the information they need to better understand problems and solutions.

4. **Activating learners as instructional resources for one another** – getting students involved with each other in discussions and working groups can help improve student learning.

5. **Activating learners as owners of their own learning** – getting students to become owners of their own learning can not only help students take responsibility for their own learning, but can lead directly to improved student performance.

A free webinar by Dylan Wiliam emphasizing the clear understanding of formative assessment and giving some practical strategies is available at: http://info.nwea.org/FY2012WinterCampaignKLTWebinar2On-demandRegistration.html?

Information from this article is from the Northwest Evaluation Association website: http://www.nwea.org/

When the cook tastes the soup, that’s formative; when the guests taste the soup, that’s summative.

- R. Stake

March 2013

Inside this issue:

1	Data and Assessment
2	English Language Arts
3	Mathematics
4	Learning Supports
4	Web Resources

Illinois State Board of Education/SSOS Content Specialists
Academic Vocabulary and the Common Core State Standards

The Common Core Standards for English Language Arts emphasize the teaching of academic vocabulary (Tier Two Words). As defined by Isabel Beck in *Bringing Words to Life*, academic vocabulary includes:

- Words likely to appear frequently in a wide variety of texts/disciplines (utility and importance)
- Words necessary for understanding a text and which allow for rich representation (instructional potential)
- Words that relate to other words and offer students more precise ways of referring to ideas they about which they already know (conceptual understanding)

Consider the following questions when determining which Tier Two Words to choose for instruction:

- How generally useful is the word? Is it a word that students are likely to see often in other texts? Will it be of use to students in their own writing?
- How does the word relate to other words or ideas that the students know or have been learning?
- What does the word choice bring to the text? What role does the word play in communicating the meaning of the context in which it is used?

Vocabulary Instruction Suggestions

According to the Institute of Educational Sciences, the amount of time needed for vocabulary instruction will be determined by the students’ prior knowledge of the vocabulary which will need to be learned. Words are best learned through repeated exposure in multiple contexts. It could take as many as 17 exposures for a student to learn a new word. Repeated exposure could be in the same lesson or passage, but the exposures will be most effective if they appear over an extended period of time. Words that appear only once or twice in a text are typically not words that should be targeted for explicit instruction because there may never be enough practice to learn the word completely. Students should be provided with the definitions of these infrequent words.

Coming Soon...

New ISBE Winter/Spring Series: ELA Common Core Shift Training Sponsored by the Illinois State Board of Education

The ELA Content Area Specialists will be hosting another professional development opportunity with several one day stops around the state. The cost will be minimal and registration is now open.

Content will be geared towards the CCSS shifts in English/Language Arts. Breakout sessions will be offered along with lunch.

Dates and Locations

- Mar 21st: Rockford
- Mar 22nd: Moline
- Apr 9th: Gurnee
- May 1st: Peoria
- May 2nd: Urbana
- May 3rd: Chicago/Midway

Registration details can be found at the following link: http://conferences.illinoisstate.edu/ela/
Focus on Mathematical Practice 6

The sixth Math Practice Standard, **Attend to Precision**, means mathematically proficient students use clear definitions in discussions with others and in their own reasoning. Students state the meaning of symbols they choose, including using the equal sign consistently and appropriately. They carefully specify units of measure, and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context.

This practice standard is much more about precision in language and communication than it is about accurate calculations. Students should be sharing ideas using grade appropriate concise language and descriptions. An example is problems involving reasoned solving of equations, such as those in which extraneous solutions are likely to be found and must be discarded.

PARCC Fluency Expectations for Algebra 2

A-APR.6 This standard sets an expectation that students will divide polynomials with remainder by inspection in simple cases. For example, one can view the rational expression \((x + 4)/(x+3)\) as \((x+4)/(x + 3) = ((x + 3) + 1)/(x+3) = 1 + 1/(x+3)\)

A-SSE.2 The ability to see structure in expressions and to use this structure to rewrite expressions is a key skill in everything from advanced factoring (e.g., grouping) to summing series to the rewriting of rational expressions to examine the end behavior of the corresponding rational function.

F-IF.3 Fluency in translating between recursive definitions and closed forms is helpful when dealing with many problems involving sequences and series, with applications ranging from fitting functions to tables to problems in finance.

For more information: [PARCCMCFMathematicsAl-gII_Nov2012V3_FINAL.pdf](http://www.parcconline.org/sites/parcc/files/PARCCMCFMathematicsAl-gII_Nov2012V3_FINAL.pdf)

For **Fluency Expectations** for students in **Mathematics III**:

PARCC Updates

PARCC (Partnership for Assessment of Readiness for College and Careers) is actively working on producing computer-innovative assessments for 21 states and the District of Columbia. If you have not already had an opportunity to explore their website, check it out at parcconline.org. The many resources available include the Model Content Frameworks, Item Prototypes, Performance Level Descriptors, Assessment Reference Sheet, Calculator Policy and Technology Guidelines. For Algebra 2 or Math 3, an online calculator with functionalities similar to that of a TI-84 graphing calculator will be provided on the calculator session of the assessment. There will also be a non-calculator session of the assessment.

PARCC provides the Model Content Frameworks for both high school pathways. The MCF clearly identify important aspects of each course and how they will be assessed. The Assessment Limits for Standards Assessed in More than One End-of-Course Test is a table that clearly defines what will be assessed from a standard in a given course. It is important to note that the MCF does not fully align with Appendix A from the CCSSM website.

“Education is not the filling of a pail, but the lighting of a fire.”

William Butler Yeats
Every Moment is Instructional

A wise teacher once said that “every moment with a child should be an instructional moment.” The adage is simple, yet true. In the classroom, a teacher’s behavior is observed, interpreted and even repeated by students. The importance of a positive example is intuitive, and also proven by research. Studies show that, when teachers act negatively toward students, misbehavior, delinquency, disengagement, and academic failure increases (U.S. Department of Education, 1998).

Further research indicates that positive modeling and explicit instruction are the best ways to decrease student misbehavior (Jonassen, 1999), thus increasing learning and (re)-engagement of students. Effective modeling includes exhibiting competencies in social, emotional, behavioral, physical and cognitive learning development while explicit instruction can focus on teaching students healthy coping strategies, behaviors, and academic skills. Teacher-student relationship building also supports an emotionally safe classroom environment. These supportive interactions and modeling directly impact learning.

Some questions teachers may consider when modeling appropriate behaviors:

- Is my tone quiet and calm when I interact with students?
- Do I use appropriate and understandable language?
- Do I model classroom rules?
- What are the strengths of each student in my class?
- Do I react with a respectful tone of voice?
- Does my body language reflect non-confrontation?

Response Systems

As part of the instructional planning process, teachers should consider how students will know when they have acted appropriately or inappropriately. Studies show that acknowledgement by teachers is “related to both initial and long-term academic engagement and social success” (Akin-Little et al, 2004). Methods of acknowledgement/correction need not be elaborate. In fact, social recognition tends to be most effective in reinforcing intrinsic motivation. When using a tangible reward system initially to increase buy-in for some students, teachers should:

- Deliver them quickly after the desired behavior is exhibited;
- Connect them to the behavior, not the individual;
- Vary the type (praise, incentives, approval, recognition, points), number, and frequency;
- Consider the appropriateness of the reward; and
- Gradually reduce to eventually eliminate

Research has shown that younger students positively respond initially to tangible rewards (such as stickers) while older students respond best to social/verbal acknowledgements. Ultimately, planning for effective acknowledgements within the school-wide and classroom systems can increase and maintain positive behaviors.

Helpful Resources

www.edteck.com/dbq - this site is a creative approach to reaching students through images when presenting Content Area Literacy involving teaching with documents

www.isbe.net/learningsupports – Learning Supports site including Conditions for Learning indicators and an A-Z index of resources for helping students

http://www.parcconline.org/ - for the most up to date information on the PARCC Assessments

https://docs.google.com/spreadsheet/ccc?key=0AjIqyKM9d7Z7YdEhR3BjMmzBWNzMoY2YwWYVM1UWo0TE4qId=0 - Dan Meyer has created a spreadsheet of CCSSM aligned Math tasks for middle and high school teachers. He also shares his Algebra and Geometry curriculum. His blog is full of great classroom ideas and allows teachers a place to interact with other educators.

Visit www.isbe.net to download this newsletter.