
JavaScript OOP and DOM

JAVASCRIPT is a complex, powerful language

that supports many of the features of

object-oriented programming (OOP). It allows

us to create custom objects, along with

providing a rich library of built-in objects.

Additionally, it exposes the content of a

webpage as a set of objects referred to as

the document object model (DOM). Working

with the DOM allows for the modification of

webpage content and styles using JavaScript

code.

Objective:

� Create and work with built-in JavaScript objects and understand the role of the
DOM in creating dynamic webpages.

Key Terms:

�

Understanding JavaScript OOP and DOM

Program code development is a structured process with a set of predetermined steps. As the

number of programs increases, code reuse is a way to decrease the time required to code and

develop programs. The most common technique for sharing code is to place commonly used

functions in a “.js” file that can be used by multiple Web documents. Functional/procedural

programming is a method of code reuse that depends on reusing functions. User-written

E-unit: JavaScript OOP and DOM

Page 1 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

attributes/properties

black box

composition relationship

concatenates

constructor function

document object model
(DOM)

encapsulation

functional/procedural
programming

instantiation

methods

new

NodeList

object

object composition

object-oriented
programming (OOP)

string

this

Unified Modeling
Language™ (UML)

UML class diagram

functions can become complex if they take in multiple parameters. Using complex functions

written by others can be a daunting experience.

CREATING OBJECTS IN JAVASCRIPT

You need to know various steps to create objects in JavaScript.

Object-Oriented Programming (OOP)

Object-oriented programming (OOP) is a type of software design that views data as the

most important aspect of a programming solution and focuses on data rather than upon the

functions. It is a programming approach to software problems from a different perspective

than functional/procedural programming. In OOP, an object is used as a repository of data,

and functions manipulate the data maintained inside the object. Currently, OOP is viewed as

being more logical and efficient for application development than functional programming.

An object is the basic entity created in an OOP environment. An object maintains data or

attributes/properties. An object also contains methods (functions) that work upon the

class attributes. Encapsulation is the notion of creating a packaged entity that holds data and

the procedures that work on it; encapsulation is the hallmark (trademark) of an OOP system.

Since an object maintains data and functions that work with the data, an object is considered

a “black box.” A black box is an object in which the user feeds in input and then receives out-

put through a return value. Once an object definition has been created, it can be used multiple

times with the assurance that the data and functions work correctly with one another (see the

example below).

E-unit: JavaScript OOP and DOM

Page 2 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

stu_name

stu_id

function toString()

function getmailId()

function createPassword()

StudentObject

FIGURE 1. Here is an object definition for an object called StudentObject that maintains two class attributes: stu_

name and stu_id. The object also contains three functions. None of these functions take in parameters.

Unified Modeling Language (UML)

Developing programming code is a complex process that starts with designing the code.

Once a design is finalized, it is converted into programming statements. Once code has been

written, it is difficult to implement changes. Therefore, it is imperative that the design process

be robust—a process where all aspects of the application are taken into account before writing

programming code.

A rigorous program design process requires adequate tools. Currently, Unified Modeling

Language™ (UML) is the standard tool for software design processes based on OOP meth-

odology. It is based upon the work of three computer scientists: James Rumbaugh, Grady

Booch, and Ivar Jacobsen.

UML 2, the current version of UML specifica-

tions, contains two categories of diagrams: diagrams

that depict the structure of a system and those that

depict the behavior of the system. This lesson dis-

cusses only one diagram: the UML class diagram,

which is an illustration that depicts the object struc-

ture.

A class diagram represents an object’s definition in

a table with three rows. The first row holds the name

of the class. The second row displays the object’s

attributes. The third and last row in the class diagram

lists all the methods of the object.

A class usually contains a special function called

the constructor function, which is a task (func-

tion) that automatically executes when an object vari-

able is created in a program. The name of this func-

tion is the same as the name of the class. The process

of creating an object variable is instantiation.

Languages, such as C++ and Java, use a reserved

word called “class” to create an object definition. This

reserved word is not used in JavaScript. However, it is common practice to use the words

“object” and “class” interchangeably since that is the case in Java and C++. (NOTE: This

notion of using “object” and “class” to mean “object” in an OOP environment exists in

JavaScript environments and in literature.)

Creating an Object in JavaScript

After an object definition is created, object variables can be created or instantiated. There are

multiple methods for instantiating object variables in JavaScript. We will discuss three meth-

ods: Constructor, literal syntax, and factory functions.

E-unit: JavaScript OOP and DOM

Page 3 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

StudentObject

stu_name

stu_id

StudentObject()

toString()

getMailId()

createPassword()

FIGURE 2. Here is an UML diagram for the

StudentObject class. The first row contains the

text “StudentObject” or the name of the object.

The second row lists the object attributes, and the

third row contains function names, including the

constructor function. It is typical to list the class

constructor as the first function in a class UML

diagram.

Method 1

Constructor function: In this method, the class constructor function is developed. Inside

the class constructor, values are assigned to class private variables, and class functions are

coded. Within the constructor function, the keyword “this” is used as a prefix to denote class

variables. This is the method that will be used in this lesson to create object definitions. One

class function coded for most objects is a function called a toString function. This function

returns all the class private variables as a single string value.

E-unit: JavaScript OOP and DOM

Page 4 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Class UML Diagram

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

<script>
StudentObject()

{
.stu_name =
.stu_id =

.toString = ()
{

+ .stu_name + + .stu_id
}

.getMailId = ()
{

.stu_name + .stu_id
}

.createPassword = ()
{

}
}

myStudent = StudentObject()
alert(myStudent.toString())
myStudent.stu_name =
myStudent.stu_id =
alert(myStudent.toString())

alert(+ myStudent.createPassword() +
+ myStudent.getMailId())

</script>

function

this
this

this function

return this this

this function

return this this

this function

return

var new

"-default-"

"name=" ", id="

"default_password"

"John"

"password="
"\nemail id="

99

1234

Class Code

Output Produced by Code

StudentObject

stu_name

stu_id

StudentObject()

toString()

getMailId()

createPassword()

FIGURE 3. This code shows the class UML diagram for the StudentObject class, along with the code for the class coded inside

the class constructor function. Also, note the statements to instantiate the class definition and the invocation of class

methods. Code highlighted in light green constitutes the class definition. The definition starts with a function called

StudentObject. Inside the function, the keyword “this” is used to indicate that it contains a class definition. The “this”

keyword is used to reference class data. Lines 4 and 5 place values in class attributes called stu_name and stu_id. Line 7

creates a class function called toString. It is a class function since the name of the function is prefixed by the “this”

keyword. There are function definitions for the class functions getMailId and createPassword.

FIGURE 3—Interpretation continued: Code not included in the green box is considered to

be “outside” the class. In line 22, an object variable is instantiated using the “new” keyword.

The new keyword is a keyword that creates a copy of the object in main memory and assigns it

the name “myStudent.” Line 23 invokes the toString function inside the object variable,

myStudent. The “.” operator is used to retrieve a function or attribute of an object variable.

The “.” operator is used again in lines 24 and 25 to place values in class attributes. Remaining

lines in the code invoke various class functions. The object definition can be used to instantiate

other variables of the same object type.

Method 2

Literal syntax: In this method of defining objects, the object variable is created using the

“var” keyword. Instead of assigning a single value to the variable, a set of key-value-pairs is

assigned to the variable. The key value represents the name of the property, and the value is the

literal placed in that property. This method does not make use of the “new” keyword. Addi-

tionally, the object is not given a name; only the instance is given a name.

E-unit: JavaScript OOP and DOM

Page 5 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Class UML Diagram

stu_name

stu_id

Class Code

1
2
3
4
5
6
7
8
9

var myStudent = {
stu_name: ,
stu_id:
}

alert(myStudent.stu_name + + myStudent.stu_id)

myStudent.stu_name =
myStudent.stu_id =
alert(myStudent.stu_name + + myStudent.stu_id)

"--default--"

", "

"John"

", "

99

1234

FIGURE 4. Here is an UML diagram for a class, along with the code for the object. In this technique, the name of the object is

not specified. A variable is set up in line 1 with the name myStudent. In lines 2 and 3, attributes and values for the attributes

are specified. The class UML diagram shown indicates that the class is set up without a name and without any functions.

Lines 5 through 9 show that the “.” operator may be used across the myStudent variable, indicating that it is an object and

that it supports properties.

Variations of the literal syntax allow for definitions of functions.

When using literal syntax to create objects, the object definition cannot be used to

instantiate other object variables. The only object variable being defined is the one whose name

is specified after the “var” keyword.

Method 3

Factory functions: In this method, the principles of the constructor method and the literal

method are combined. Object definitions are set up using the “var” keyword, but the identifier

after the “var” keyword denotes an object name, not an object instance.

E-unit: JavaScript OOP and DOM

Page 6 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Class UML Diagram Class Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

var

function

return this

this

myStudent = {

stu_name: ,

stu_id: ,

toString: ()

{

.stu_name + +

.stu_id

}

}

alert(myStudent.stu_name + + myStudent.stu_id)

myStudent.stu_name =

myStudent.stu_id =

alert(myStudent.toString())

"--default--"

", "

", "

"John"

99

1234

stu_name

stu_id

toString()

FIGURE 5. In this variation of the literal syntax, the toString function has been defined inside the var statement. It may now

be accessed via the “.” operator in line 16.

Constructors That Take In Parameters

The constructor function and factory function techniques for creating object definitions use

constructor functions that are automatically invoked when an object is instantiated. In the

examples used to illustrate the two techniques, the constructor function was coded with no

parameters.

However, a constructor function may take in parameters used to update the class’s attrib-

utes. If the constructor is coded to take in parameters, it must be invoked with the correspond-

ing number of arguments. The constructor function technique is used in an example to illus-

trate a constructor function that can take in parameters.

E-unit: JavaScript OOP and DOM

Page 7 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Class UML
Diagram Class Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

var function

var new

function

return this

this

return

new

StudentObject = ()

{

aStudent = ()

aStudent.stu_name =

aStudent.stu_id =

aStudent.toString = ()

{

.stu_name + +

.stu_id

}

aStudent

}

myStudent = StudentObject()

alert(myStudent.stu_name + + myStudent.stu_id)

myStudent.stu_name =

myStudent.stu_id =

alert(myStudent.toString())

Object

"--default--"

", "

", "

"John"

99

1234

stu_name

stu_id

toString()

StudentObject

FIGURE 6. The “var” keyword is used in line 1 to create an object definition for StudentObject by creating a function definition

that serves as the constructor function for the class. Inside the constructor function, an object variable of type “Object” is

declared in line 3. “Object” is a built-in object in JavaScript and can be used to create an object variable. This variable’s

attributes are set up in lines 4 and 5, and an object function is set up in lines 8 through 11. After the object definition has

been created, the “Object” variable is returned from the function. Lines 14 through 19 create an object variable of type

StudentObject and use the “.” operator to access the object variable’s attributes and functions.

Creating constructor functions that take in parameters can speed up the process of populat-

ing class variables. Multiple class variables can have values assigned to them using

parameterized constructor functions, thereby alleviating the need to code assignment state-

ments for each and every class attribute.

USE OBJECTS IN JAVASCRIPT

The Object Definition Process

The process of creating an object definition involves multiple steps. When developing an

object definition, it must be at the most elemental level. For example, rather than create an

object that maintains student and school information within the same class, it is more appro-

priate to develop a separate class to hold student information and a separate class to hold school

information.

E-unit: JavaScript OOP and DOM

Page 8 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Class UML Diagram

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

function

this

this

this function

return this this

var new

StudentObject(input_name, input_id)

{

.stu_name = input_name

.stu_id = input_id

.toString = ()

{

+ .stu_name + + .stu_id

}

}

myStudent = StudentObject(,)

alert(myStudent.toString())

myStudent.stu_name =

myStudent.stu_id =

alert(myStudent.toString())

"name=" ", id="

"Jane"

"John"

2345

1234

Output

Class Code

stu_name

stu_id

StudentObject

StudentObject(input_name
,input_id)

toString()
getMailId()
createPassword()

FIGURE 7. Here is the class definition for StudentObject where the constructor function takes in two parameters, as

shown in line 1. The name of the parameter variables is prefixed with “input” to indicate that they are being sent

into the function. The values in the parameter variables are placed in the class attributes in lines 3 and 4. Since the

constructor requires two parameters, the statement that creates an object variable in line 12 provides two

arguments to the object instantiation statement.

Object composition is the creation of objects from other objects. Object composition is

shown in a class diagram as a line connecting the object with the object that contains it to rep-

resent a composition relationship. The line ends with a filled diamond across the object

that holds an instance of the composed object.

The design decision to place

address-related information in a sep-

arate object instead of maintaining

address information in the

StudentObject and the

TeacherObject is made so code that

converts address fields into a mailing

address format is written in the

AddressObject object definition and

used in all classes that need to hold

address information.

Composition is one way by

which object relationships can be

built. Aside from composition,

objects may implement other rela-

tionships (e.g., prototypal inheri-

tance, association, and interfaces).

[NOTE: This lesson does not

address prototypal, inheritance, asso-

ciation, or interface relationships.]

E-unit: JavaScript OOP and DOM

Page 9 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Identify Object

Identify Object
attributes

What
functions/methods

are required

• What does object represent?

• How will it be used?

• What are the various data points/attributes
of the object?

• What is the datatype of each attribute

• Should constructor take in parameters?

• What other functions are needed?

• Should a toString function be coded?

FIGURE 8. At this stage of the design process, all attributes that will be used in the

application system for this specific entity must be identified, along with the appropriate

data type. Even though JavaScript is a loosely typed language, where variables are not tied

to a specific data type, good object design dictates that the datatype of the attribute be

taken into consideration when an object is designed.

FIGURE 9. This illustration shows the UML class diagrams for three objects. The

AddressObject contains attributes that hold address information. The other two

objects—StudentObject and TeacherObject—contain an attribute of the

AddressObject type. As these classes are related, the filled diamond points to

the StudentObject and TeacherObject class diagrams since each contains an

instance of the AddressObject as a class attribute.

Using Object Methods and Properties with Object Composition

Once an object has been instantiated, its attributes can be modified and class functions can

be invoked. These principles are true even when a composition relationship exists between

two classes.

E-unit: JavaScript OOP and DOM

Page 10 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

function

this
this
this
this

this function

return this
this this
this

function

this
this
this

this function

return this
this

var new
var new

AddressObject(inp_addline, inp_city, inp_state, inp_zip)
{

.address_line = inp_addline

.city = inp_city

.state = inp_state

.zip = inp_zip

.getStreetAddress = ()
{

.address_line + +
.city + + .state +
.zip

}
}

StudentObject(name, id, address)
{

.stu_name = name

.stu_id = id

.stu_address = address

.getMailAddress = ()
{

.stu_name + +
.stu_address.getStreetAddress()

}
}

stAddress = AddressObject(, , ,)
myStudent = StudentObject(, , stAddress)

alert(+ myStudent.stu_name)
alert(myStudent.getMailAddress())

"\n"
", "

"\n"

"12 Hill Street" "Chicago" "IL"
"Jane"

"Student name is "

66554
2345

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Output

FIGURE 10. Here are the AddressObject and StudentObject class diagrams, with an instance of

AddressObject maintained inside the StudentObject definition. To keep the code simple, the

TeacherObject class definition is omitted.

FIGURE 10—Interpretation: In the code, lines 1 through 14 implement the AddressObject

class definition, and lines 16 through 27 implement the class definition for the StudentObject

object. The constructor function of the StudentObject class takes in a parameter called

“address” that is placed in the class attribute stu_address. This statement looks no different

from lines 18 and 19 that populate the stu_name and stu_id attributes from parameter values.

Line 29 creates an instance of the AddressObject class and gives the instance the name

stAddress. This variable is sent in as the third parameter to the StudentObject constructor in

line 30 when creating an instance of the StudentObject class in an object variable called

myStudent.

In the StudentObject class definition, the getMailAddress class function defined in lines 22

through 26 concatenates (brings together two or more separately located objects in a new

location) the values in the stu_name class variable with the value returned by the stu_address’s

getStreetAddress class function. This statement executes correctly since the stu_address class

variable was populated using the third parameter in the constructor invocation, and the param-

eter was of type AddressObject. As can be observed, object relationships can be used in code to

implement composition, but it requires an understanding of the class definitions and the

nature of the relationship.

PRE-DEFINED OBJECTS IN JAVASCRIPT

In addition to objects that can be created in JavaScript, many built-in objects are available

for use. These objects can be instantiated, and their attributes and methods can be used in

code.

The String Object

The string object is one of the

most commonly used JavaScript

objects. This lesson contains

examples of variables that hold

string data, such as the stu_name

class variable maintained in the

StudentObject class. However,

string variables were treated as

“regular” variables and were used

without using the “new” keyword.

Nevertheless, string is an object in

JavaScript, and string variable may

be created using object variable

syntax.

The string class’s constructor

may be invoked without any argu-

ments or with one constructor.

E-unit: JavaScript OOP and DOM

Page 11 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

1
2
3
4
5
6
7
9

var

var new

var new

name_1 =

name_2 = String()
name_2 =

name_3 = String()

alert(name_1 + + name_2 + + name_3)

"John"

"Jane"

"Jill"

"\n" "\n"

FIGURE 11. Here are the different ways to create string variables. Line 1

creates name_1 as a “regular” variable and assigns a string literal to it. Line

2 uses the “new” keyword to set up an object variable called name_2. This

statement clearly shows that string is an object definition. Line 6 also uses

the “new” keyword to create a string object variable and passes in a string

literal as an argument to the constructor function.

Regardless of how a string variable has been set up, the value maintained in it can be displayed

by coding in the name of the variable. String is an object that supports many different func-

tions. It also has a property called “length” that returns the number of characters in the string.

The value in this property may not be modified.

E-unit: JavaScript OOP and DOM

Page 12 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Function / Attribute

length

Attribute: Returns the number

of characters in the string

toLowerCase

Function: Returns the string

with all characters in lower case

toUpperCase

Function: Returns the string

with all characters in upper case

indexOf

Function: Returns the position

of the argument character in the

string, with 0 denoting the first

character; A-1 is returned if it is

not found in the string.

charAt

Function: Returns the character

at a specific position within the

string

split

Function: Splits up a string

based upon a delimiter and

places the output in an array

String Function Usage

var string_length = myStr.length

alert(myStr + +

string_length)

"\nlength="

var lc_myStr = myStr.toLowerCase()

alert(+

lc_myStr)

"lower case version = \n"

var uc_myStr = myStr.toUpperCase()

alert(+

uc_myStr)

"upper case version = \n"

var

var

indexof_X = myStr.indexOf()
alert(+
indexof_X)

indexof_J = myStr.indexOf()

alert(+

indexof_J)

"X"
"indexOf('X') = "

"J"

"indexOf('J') = "

var charAt_3 = myStr.charAt(3)

alert(+ charAt_3)"charAt(3) = "

var

var

for

words = myStr.split()

msg=

(i=0; i < words.length;i++)

msg = msg + words[i] +

alert(msg)

" "

""

"\n"

Output

FIGURE 12. The first entry demonstrates the use of the length property. The toLowerCase and toUpperCase functions take in

no parameters and return a version of the string with all characters lowercase or uppercase, respectively. The indexOf

function takes in one character or a string as a parameter and locates it within the string. If it is found, the start position is

returned with 0 used as the position number for the first position. If the parameter string is not found in the string, the

indexOf function returns a –1. The charAt function takes in a number. The character at that position is returned. As with the

indexOf function, the position number of the first character in the string is 0. The split function takes in a separator as an

argument. In the example shown in FIGURE 11, the space is used as the separator. This action causes the myStr variable to

be split into three elements, which are placed in the words array. A “for” loop is used to retrieve individual elements from the

array and place in a variable called “msg,” which is then displayed out.

The Math Object

JavaScript contains a built-in object called “math” that provides access to mathematical

functions, such as random number generation and trigonometric functions. The math class is a

static class, so a math object variable cannot be instantiated in code. Instead, the name of the

class, “math,” is used instead of an instance variable.

The math class provides a function that rounds up a number to the nearest integer. How-

ever, the math class does not provide a function to round up a number to a specific number of

places after the decimal. To do so, the toFixed method of the number class is used. All vari-

ables that contain numeric data are considered instances of the number class.

The math class provides methods that return the maximum and minimum from a series of

numbers. If the series of numbers is maintained in an array, the spread operator denoted by

three “.” symbols is used. This informs the function that an array is specified as an argument

instead of a set of numbers.

The math class provides a function called “random” that returns a number between 0 and 1.

If an integer value is needed, the value returned by the random function is multiplied by a

larger number and rounded up. [See FIGURE 14.]

E-unit: JavaScript OOP and DOM

Page 13 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

INCORRECT Use of Math Class

var new

var

myMathObj = Math()

myPI = myMathObg.PI

alert(+ myPI)"PI="

CORRECT Use of Math Class

var myPI = Math.PI

alert(+ myPI)"PI="

FIGURE 13. In the left column, the math object is instantiated, and the name of the object variable is myMathObj. However,

since the math class is a static class, instance variables of its type cannot be created. The right side column shows the

correct use of the math class. Instead of creating an instance of the class, its methods are used directly by prefixing them

with the name of the class instance of the name of the instance variable. The PI attribute of the math class is retrieved and

displayed.

The Date Object

The date object is another built-in JavaScript object. Unlike the math object, the date object

is not a static object. It needs to be instantiated before it can be used. When it is instantiated

without any parameters, it returns the current system date from the machine. The date object

contains properties that return day of the month, month number, year, and day of the week,

along with time-related properties.

The date object provides methods that return day of the month, day of the week, month,

and year. These are returned as numbers. The day number is returned as a number in the

range 1 to 31. The getDay function returns day of the week with 0 for Sunday and 6 for Satur-

day. The getMonth returns the month as a number with 0 for January and 11 for December.

E-unit: JavaScript OOP and DOM

Page 14 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Function / Attribute

PI

Attribute: Returns the value of
PI

round

Returns the argument number
rounded to an integer

toFixed

This is a method of a float
number which returns a number
rounded to a certain number of
places after the decimal point

max

Function: Returns the
maximum value in an array
provided the spread operator,
"...", is used

min

Function: Returns the
minimum value of the
arguments sent in

random

Function: Returns a random
number between 0 and 1; To
obtain an integer value, multiply
the value returned by random
and round it

Function Usage

alert(+
Math.PI)

"PI="

var number = 123.4567
alert(+

Math.round(number))
"Math.round(123.4567)="

var number_2_dec_places = number.toFixed(2)
alert(+

number_2_dec_places)
"number.toFixed(2) = "

var
var

numbers = [23, 56, 78, 99,90, 4, 1];
max_num = Math.max(...numbers);

alert(+ max_num)"Max = "

var min_num = Math.min(45, 67, 89,23, 5, 23)
alert(+ min_num)"Min = "

var

var

random_num = Math.random()
alert(+ random_num)

random_num_0_100 =
Math.round(Math.random() * 101)

alert(+ random_num_0_100)

"Math.random="

"Random # 0-100 ="

Output

FIGURE 14. Math class functions along with examples of their usage. NOTE: The toFixed method is shown in yellow since it is not a math

class function.

The date object has no methods/functions that return a text representation of the day of the

week or the name of the month maintained in a date object. If there is a need to display the day

of the week in literals, such as “Sunday,” “Monday,” code must be written to examine the

value returned by the getDay function.

JavaScript contains functions to work with current time. When the date object is

instantiated, it holds information about the current date and the current time at the instant it

was created. Time-related information may be retrieved using date class functions. The min-

utes returned by the date object do not contain leading zeros. Therefore, 11:01 will return

minutes as 1. Code needs to be written to pad a 0 in front of it. If time is to be displayed in

AM/PM format, code needs to be written to examine the value in the hours-variable and dis-

play hours accordingly.

E-unit: JavaScript OOP and DOM

Page 15 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Property/Function

getDate()

getMonth()

getDay()

getYear()

getFullYear()

Description

Returns the day of the month as a number 1-31

Returns the month as a 0-based number. For
example, January is returned as 0, while December
is returned as 11.

Returns the day of the week as a 0-based number.
For example, Sunday is returned as 0 and Saturday
is returned as 6

Returns the last 2 digits of year

Returns year in yyyy format

Code that demonstrates use of the date object:

var new
var
var
var

today = ()
today_dd = today.getDate()
today_mm = today.getMonth()
today_yyyy = today.getFullYear()

Date

alert((today_mm +) + + today_dd + + today_yyyy)1 "/" "/"

Code Output

FIGURE 15. Here are some of the methods of the date object, along with code that makes use of it.

Output is shown below the code. Notice that the alert statement adds 1 to the variable that holds the

value returned by getMonth() since it returns a number that is –0-based instead of being 1-based.

E-unit: JavaScript OOP and DOM

Page 16 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

1
2
3
4
5
6
7
8
9
10
11
12
13

var
var new
var
var
var

var
var

arr_day=[, , , , , ,]
today = ()
today_dd = today.getDate()
today_mm = today.getMonth()
today_yyyy = today.getFullYear()

today_dow = today.getDay()
today_dow_str = arr_day[today_dow]

alert(+ today_dd +
+ today_dow +

+ today_dow_str
)

"Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"

" today_date="
"\ntoday_dow="
"\ntoday_dow_str="

Date

Code Output

FIGURE 16. Here is code that displays the name of the week as a string literal. The first line of

code declares an array that holds string literals corresponding to weekday names, starting with

“Sunday” since the getDay function returns a 0 for “Sunday.” In line 8, the value returned by the

getDay function is used as a subscript across the arr_days array defined in line 1. This retrieves

the literal that corresponds to the day of the week and is displayed in the alert statement.

Property/Function

getMinutes()

getHours()

getSeconds()

Description

Returns the number of minutes since the last hour 1 to 59.

Returns the hours from the start of day as a number 0 to 23.

Returns the number of seconds from the start of the last minute 1 to 59.

Code demonstrating use of the date object:

var new
var
var
if

now_time = ()
hh = now_time.getHours()
minm = now_time.getMinutes()
(minm <)
minm = + minm

alert(hh + + minm)

Date

10
"0"

":"

Code Output

FIGURE 17. This illustration is of a time-related function maintained in the date object, along with code that displays the

current time. [NOTE: A decision statement is used to display 1 minute as “01” instead of “1.”]

OOP can be used to create a user-defined object that encapsulates date and time informa-

tion and returns user-friendly date and time information. In the class, two class variables are

set up to hold string representation of date and time in the class constructor. Once the class has

been instantiated, these class variables can be used to display date and time.

E-unit: JavaScript OOP and DOM

Page 17 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Class Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

function

var
var

var new
var
var
var
var
var
var

var
var

if

this

this

var new

DisplayDateTime()
{

arr_day=[, , , , , ,]
arr_month=[, , , , ,
, , , , ,]

now = ()
now_dd = now.getDate()
now_dow_num = now.getDay()
now_mm = now.getMonth()
now_yyyy = now.getFullYear()
hh = now.getHours()
minutes = now.getMinutes()

now_mon_str = arr_month[now_mm]
now_dow_str = arr_day[now_dow_num]

(minutes <)
minutes = + minutes

.fulldate = now_dow_str + +
now_mon_str + + now_dd + + now_yyyy
+ + (now_mm +) + + now_dd + +
now_yyyy +

.fulltime = hh + + minutes
}

now_date_time = DisplayDateTime()
alert(+ now_date_time.fulldate +

+now_date_time.fulltime)

"Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
"Jan" "Feb" "Mar" "Apr" "May" "Jun",

"Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

"0"

", "
" " " "

" (" "/" "/"
")"

":"

"Todays date is "
"\nThe current time is "

Date

10

1

Output

FIGURE 18. Class UML and code is shown, along with code that instantiate and use the class. The class contains two

properties and no methods. Lines 1 through 26 contain the class definition. There are many variables used in the class

constructor function. However, only the highlighted variables are class properties since they are prefixed with the “this”

keyword. Arrays are set up in lines 3 through 5 to hold string literals to represent day of week and month names. The current

date is retrieved in line 6. Date class functions are used in lines 7 through 12. Some of these values are used as subscripts

across the arrays defined in lines 3 through 5. Lines 20 through 25 populate the class properties. Line 28 instantiates the

DisplayDateTime object and the alert statement in lines 29 and 30 retrieves the values in the class private variables and

displays it back.

This object also demonstrates the power of OOP technology. If the class constructor defini-

tion is placed in a .js file, it may be used across an entire website to retrieve and display system

date and time.

The Array Object Properties and Methods

Arrays have been discussed in-depth in prior lessons. An array is a “compound” variable that

stores multiple elements inside it, and each individual element within an array is accessed

using a numeric position number known as a subscript. However, an array is actually an object

of type Array, where Array is a built-in object in JavaScript. Since it is an object, it supports

methods and properties. The length property is a read-only property and returns the number

of elements in the array.

The sort function arranges the elements of the array in ascending order. Once the sort has

been completed, the original order of elements is lost. The reverse function reorders the array

from back to front. The indexOf function is similar to the indexOf function for the string

class. It returns the position of the function argument in the array, and a –1 if the argument

element is not present as an array element.

The array object supports other functions, such as:

� The pop function removes the last element in the array.

� The push function serves as an array append function.

� The shift function removes the first element in the array.

E-unit: JavaScript OOP and DOM

Page 18 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

EXPLORING OUR WORLD…

SCIENCE CONNECTION: Built-in Objects

Any numbers used in JavaScript are

instances of the number object. Because “num-

ber” is an object, it contains properties and

methods. Learning to use number object’s

methods allows for fine precision when handling

numeric data in JavaScript code, such as round-

ing up numbers to a set number of decimal

places or formatting it based on the locale of

the browser software. Learn more about

JavaScript—The Number Object and its methods

at

https://www.tutorialspoint.com/javascript/

javascript_number_object.htm
In addition to objects that can be created in JavaScript,

many built-in objects are available for use. These

objects can be instantiated, and their attributes and

methods can be used in code.

https://www.tutorialspoint.com/javascript/javascript_number_object.htm
https://www.tutorialspoint.com/javascript/javascript_number_object.htm

� The unshift function, which takes in an argument, places the argument value at the start
of the array. So shift and unshift work at the beginning of the array object, while pop and
push work at the end of the array object.

� Some array functions allow for addition and deletion of elements in the middle of the
array.

E-unit: JavaScript OOP and DOM

Page 19 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Function/
Attribute

length

sort

reverse

pop

push

indexOf

String Function
Usage

Number of elements
in the array

Sorts array elements

Reverses the
order of elements
in the array

Removes the last
element in the array

Appends an
element to the end
of the array

Returns the position
of an element in the
array, and returns a
−1 if the element is
not in the array

Usage, Output

var names = [, , , ,]
alert(names + + names.length)

"John" "Jane" "Tim" "Pia" "Amelia"
"\n# of elements="

var names = [, , , ,]"John" "Jane" "Tim" "Pia" "Amelia"

names.sort()
alert(names)

names.reverse()
alert(names)

names.pop()
alert(names)

names.push()
alert(names)

"Xander"

var

var

names = [, , , ,]
alert(+ index_of_john)

index_of_greene = names.indexOf()
alert(+ index_of_greene)

"John" "Jane" "Tim" "Pia" "Amelia"
"indexOf('John')="

"Greene"
"indexOf('Greene')="

FIGURE 19. The uses of array class functions.

Approaches to Iterate an Array

“Traditional For Loop” approach: In the prior examples, a “for” loop was used to iterate

through the elements of an array object using a numeric subscript that starts at 0 and ends at 1

less than the array size. However, other methods may be used to iterate an Array object.

“Callback” approach: “Callback” is the second approach. It uses the “forEach” reserved

word. In this approach, a function is defined without a name. It takes in 1 parameter that is a

placeholder for a single array element. The “callback” function is called once for each element

in the array.v

“Object-Properties” approach: The “object-properties” approach iterates once for each ele-

ment in the array. Unlike the “callback” approach, this technique returns the numeric sub-

script for each element in the array instead of the element itself.

E-unit: JavaScript OOP and DOM

Page 20 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Method Type

Traditional “For” Loop

Callback Function

For-in

"Properties of an Object"

Syntax

Code

var

var
for var

names = [, , , ,]

names_msg =
(i = 0; i < names.length; i++)
names_msg += names[i] +

alert(names_msg)

"John" "Jane" "Tim" "Pia" "Amelia"

""

"\n"

names_msg =
names.forEach((one_name)

{
names_msg += one_name +

}
)
alert(names_msg)

""

"\n"

function

names_msg =
(one_subs names)
names_msg += names[one_subs] +

alert(names_msg)

""

"\n"
for in

Output produced by each of the alert statements:

FIGURE 20. This illustration shows various methods of iterating an array.

Other JavaScript Objects

Aside from the built-in objects, JavaScript maintains objects that deal with the use of

JavaScript in a webpage. For example:

� Window: The window object maintains browser window related properties.

� Navigator: The navigator object keeps track of the browser being used (e.g., Internet
Explorer, Firefox, or Chrome).

� Screen: The screen object is closely related to the window object and is related to the
actual monitor being used.

� History: The history object keeps a list of URLs visited by the browser in the current ses-
sion.

� Location: The location object maintains the URL of the current page.

� DOM: The document object model (DOM) maintains information about the content in
a webpage.

E-unit: JavaScript OOP and DOM

Page 21 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Window

Navigator Screen History Location document

FIGURE 22. This visual illustrates the hierarchy of browser-related objects. All of these objects are global objects and do not

need to be instantiated. They are available for use as soon as the webpage is loaded into a browser window.

Object Type Description

Window It represents the browser window. It maintains properties that keep track of size
and position of the browser window.

Navigator It maintains information about the type of browser being used.

Screen It maintains information about the screen portion of the browser window, such
as color resolution.

History It tracks the pages visited in the current browser session.

Location It maintains the current URL of the browser window.

Document
object model

It maintains information about the HTML content of a webpage.

FIGURE 21. These are examples of JavaScript objects that deal with browsers and with webpages.

DOM: DOCUMENT OBJECT MODEL

DOM Objects

A webpage is a document that maintains content using HTML elements. The visual aspect

of content is maintained using CSS styles. The document object model (DOM) is an entity

that provides an OOP visualization of webpage content. Since DOM is an object, it supports

properties and methods. These properties and methods can be used to modify webpage con-

tent and styles using JavaScript code.

When a webpage is loaded into the browser, an instance of the DOM is automatically cre-

ated and given the name “document.” This object’s write method was used to display content

in a webpage. All the HTML elements in the page are contained inside this object.

The document object visualizes the page as an inverted tree with nodes. All nodes in the

DOM hierarchy have a parent node—except for the HTML node, which is the root of the

hierarchy. Some of the elements contain text content maintained in a text node. Aside from the

text node that holds data, elements may have attributes.

Both Google Chrome and Firefox have tools that display the DOM view of a webpage. It is

displayed in text format and not as a graphic. It displays the HTML in the document in an

indented format.

E-unit: JavaScript OOP and DOM

Page 22 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

DOM View of the File

<!DOCTYPE html>
<head>

<meta />

<title> </title>

</head>

<body>

<header>

<h1> </h1>

</header>

<section>

<h2> </h2>

<p> </p>

</section>

</body>

</html>

charset=

src=

Myfirst HTML5 page

DOM-I

Elements in DOM
Here is a paragraph

"utf-8"

"my_logo.gif"

HTML File

FIGURE 23. The DOM inverted tree structure is shown in this simple illustration. Nodes that pertain to the <title>, <h1>, <h2>, and

<p> nodes contain text inside them via a text node.

Accessing DOM Nodes

Nodes can be retrieved using several methods. Three methods of the document object can

be used to retrieve one or multiple elements.

Method 1

The getElementsByTagName takes in one argument that is the name of an element. For

example, document.getElementsByTagName(“p”) retrieves all the <p> elements in the docu-

ment. Since there may be multiple elements with the same tag name, these are returned by the

method in an array-like object called a NodeList. Elements are retrieved from a NodeList

using subscripts, with 0 used to retrieve the first element in the NodeList.

Method 2

The getElementsByName retrieves elements by their name attribute. Again, this method

returns a NodeList, with 0 to many elements. The number of elements in the NodeList is

maintained in a property called “length.”

Method 3

The getElementById takes in the value in the id attribute as an argument and returns a sin-

gle element. This is because no two elements in a document may have the same value for the

id property. It is used as a unique identifier for each element in a webpage.

Name Attribute vs id Attribute: Elements in a form are required to have a name attribute

because the program that receives form data (the name of the server program that receives form

data is specified in the action attribute of the form element) identifies form elements by their

name attribute. However, the id attribute is used by JavaScript to identify an individual element

in a webpage. Therefore, it is a good design principle to provide both a name and an id attribute

for each element in a webpage that will be accessed via JavaScript or be sent to a server program.

E-unit: JavaScript OOP and DOM

Page 23 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Method Description

getElementsByTagName It returns a collection of nodes, such as the collection of all <h2> elements in the
document. This collection is maintained in an object called a NodeList.

Elements in a NodeList are retrieved like elements in an array using a numeric
subscript, with 0 used as the subscript for the first element.

The NodeList object contains a length property that returns the number of elements in
the NodeList object.

getElementById It returns a single node (or element) from the document since the id attribute cannot
be duplicated across multiple elements in a document.

getElementsByName It returns a collection of nodes, such as the collection of all <h2> elements in the
document. This collection is maintained in an object called a NodeList.

Elements in a NodeList are retrieved like elements in an array using a numeric
subscript, with 0 used as the subscript for the first element.

The NodeList object contains a length property that returns the number of elements in
the NodeList object.

FIGURE 24. The methods to retrieve DOM nodes are described here.

Manipulating DOM Nodes

Once an element has been retrieved from the webpage, its properties can be changed. For exam-

ple, the color-related or font-related properties of an element can be changed. Many ways exist to

change the text content of an element or DOM node. By modifying an element’s textContent or

innerHTML property, the text content of an element is changed. The textContent modifies only

the text in the element, while innerHTML allows for the specification of HTML, along with con-

tent. Good programming practice dictates that the textContent property be used to modify the text,

and other methods should be used to modify style-related information.

E-unit: JavaScript OOP and DOM

Page 24 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Property

textContent

innerHTML

Code

Modifies the text content of a node. Accepts only text

Modifies the text content of a node and accepts HTML code

Code that demonstrates these properties:

<!DOCTYPE html>
< >

< />
< > </ >
< >

</ >
</ >
< >

< >
< > </ >

</ >
< >

< > </ >
< > </ >
< />

< />
</ >

</ >
</ >

head
meta
title title
script

function

var

script
head
body

header
h2 h2

header
section

h2 h2
p p
img

input
section

body
html

" "

" "
" "

DOM Related

btn_click_handler

h2_elements document getElementsByTagName

h2_elements textContent
h2_elements innerHTML

DOM-I

Elements in DOM
Here is a paragraph

charset

src

type value onclick

=

()

= . ()

[]. =
[]. =

=

= = =

"utf-8"

h2

???
Google!

"Bird-Logo.png"

"button" "Check DOM" "btn_click_handler()"

{

}

0
1

<!-- 1st h2 element [0]-->

<!-- 2nd h2 element [1]-->

When Page Loads After Button is Clicked

FIGURE 25. Here is an example of a webpage that contains a button. The btn_click_handler function executes when the

button is clicked. In this function, the h2_elements variables are a NodeList variable that holds all the h2 elements in the

webpage. Since there are two <h2> elements, the first is retrieved using the subscript value of 0 and the second one is

retrieved using the subscript value of 1. The first element’s textContent property is used to modify the <h2> element’s text

to “???” For the second element, the innerHTML property is used to introduce an <a> element in the text of the h2 element.

Since the new content includes an HTML element, innerHTML was used instead of textContent.

Nodes in a DOM hierarchy have a property called style. This is an object with properties.

The properties of the style object are closely linked to the properties of the CSS style attribute.

The names of the style object’s properties are closely related to the corresponding CSS prop-

erty. The main difference is that some CSS properties have a “-“ in them, such as background-

color, and the corresponding style object property does not have the “-.” The “-“ is considered

an invalid symbol in an identifier in JavaScript, where the “-“ is used to denote a subtraction

operator.

E-unit: JavaScript OOP and DOM

Page 25 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

Style Object Property

background

backgroundColor

border, borderColor, boxShadow

font, fontFamily, fontStyle

textShadow

transform, transition

Description

Set background-color, background-image,
and other properties in a single statement.

Set background color.

Set all border-related properties in a single
statement, or set each border-related
property in separate statements.

Set font-related properties in a single
statement or in separate statements.

Set text shadow styles.

Set transform- and transition-related
properties.

Code

<!DOCTYPE html>
< >

< >

</ >
</ >
< >

< > </ >
< />

</ >
</ >

head
script

function

var

script
head
body

h2 h2
input

body
html

" "
" "

btn_click_handler

header_h2 document getElementById
header_h2 style textShadow

DOM-I

()

= . ()
. . =

=
= = =

{

}

header_h2_1
-3px 3px 1px grey

"header_h2_1"
"button" "Check DOM" "btn_click_handler()"

id
type value onclick

When Page Loads After Button is Clicked

FIGURE 26. Here are the properties of the style object and a brief description of their functionality, along with code that

demonstrates their usage. In the button object’s event handler, the <h2> element is retrieved using the document’s

getElementById method. Since the <h2> element has been set up with an id attribute, it can be retrieved using the

getElementById method. Once it has been retrieved, its style object’s textShadow property is set. This is shown in the table

that displays the element at webpage load time and after the button has been clicked.

Learning the main principles of the DOM object hierarchy, properties, and methods of

objects in this hierarchy is essential to creating applications that modify content and styles

dynamically.

Consider an HTML file that displays a dropdown list box by using a <select> element

with various nested <option>elements. The first <option> element has an empty string as

E-unit: JavaScript OOP and DOM

Page 26 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

<!DOCTYPE html>
< >

< >

</ >
</ >
< >

< > </ >
<

>
< > </ >
< > </ >
< > </ >

</ >

< >
< >

< >
< > </ >
< > </ >

</ >
</ >
< >

< >
< > </ >
< > </ >

</ >
</ >

</ >
</ >
</ >

head

script

function

var

var

var

var

if

var

script

head

body

p p

select

option option

option option

option option

select

ol

li

ol

li li

li li

ol

li

li

ol

li li

li li

ol

li

ol

body

html

" "
" "

" "
" "

" "

""

" "
}

change_color

bus_list document getElementById
bus_list style color

cis_list document getElementById
cis_list style color

selected_maj document getElementById
selected_val selected_maj value

selected_val
{

list_to_change document getElementById selected_val
list_to_change style color

Select a major:

--select major--
Business
Computer Information Systems

Business courses

bus100
bus200

CIS courses

cis100
cis200

()

= . ()
. . =

= . ()
. . =

= . ()
= .

(!=)

= . ()
. . =

= =
=
=
=
=

=

=

{

}

BUS
black

CIS
black

lstmajors

blue

"lstmajors" "change_color()"
"this.selectedindex = -1;"
""
"BUS"
"CIS"

"BUS"

"CIS"

id onchange
onfocus

value
value
value

id

id

FIGURE 27. Here is code to display a dropdown list and its event handlers.

the value attribute, while the other 2 <option> elements have three character string literals for

their value attribute.

� The dropdown list has an id value of “lstmajors” and two event handlers. The first event
handler is for the change event triggered when a user selects an item in the list. This
causes the change_color function to execute.

� In this event, the color style property for all list elements are set to black. Then the
value attribute of the selected <option> element is retrieved. Next, the list that
corresponds to the selected element is retrieved, and the color of the list is set to blue.

Comingling HTML and JavaScript Code

Consider code that wishes to change the content of an HTML element based on the day of

the week. For example, on weekends, the contents of a <h2> element must say “Happy

Weekend” and “Off to Work” on days other than the weekend.

E-unit: JavaScript OOP and DOM

Page 27 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

<!DOCTYPE html>

< >

< >

</ >

</ >

< >

< >

< >

</ >

</ >

</ >

</ >

head

script

var new

var getDay

if

else

script

head

body

h2

script

script

h2

body

html

" "

" "

//

id = "h2"

today

dow today

dow dow

message

message

document write message

= ()

= . ()

(== || ==)

=

=

. ()

Date

0 6 //0=sunday, 6=saturday

document.getElementById("h2").textContent = message

Happy Weekend!

Off to Work :-(

FIGURE 28. Here in the <script> element, the day of the week is retrieved. Based on the value

in that variable, a literal is placed in the message variable. In the HTML portion of the

document, within the <h2> element, a mini-script section is created with a document.write

statement that writes out the message variable. The value placed in the message variable is

displayed out.

FIGURE 28—Interpretation: Note the commented out line that changes the textContent

of the <h2> element. The line has been commented out because it causes a runtime error.

The reason is that the code within the <script> element executes even before the webpage has

loaded into the browser window. So when that statement executes, there may not be an ele-

ment with the id attribute “h2" in the page. Therefore, the content of the <h2> element needs

to be set inside the HTML portion of the document where the system can be sure that the ele-

ment exists within the browser window.

Summary:

� JavaScript is a mature and object-oriented programming environment. Additionally,
webpage elements are exposed to JavaScript as objects and may be manipulated
using object-oriented JavaScript code. Learning JavaScript and the DOM is crucial
to creating dynamic websites.

Checking Your Knowledge:

� 1. How can you use the math object to round up numbers?

2. How can the string object be used to convert strings to uppercase alphabets?

3. How can JavaScript be used to change the border property of a webpage ele-
ment?

4. What method can be used to retrieve all <p> elements in a webpage?

E-unit: JavaScript OOP and DOM

Page 28 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

FURTHER EXPLORATION…

ONLINE CONNECTION:

Coding Standards

Websites contain HTML code, CSS code, and

JavaScript code. Developing, updating, and maintaining

all of these different code blocks can be a daunting task.

There are sites that discuss the best practices to be used

when developing code. Setting up coding standards cre-

ates consistency and can lead to cleaner code with fewer

errors. Additionally, if everyone in a development follows

the same standards, collaborative efforts are possible. To

learn more about JavaScript Best Practices, go to:

http://www.w3schools.com/js/js_best_practices.asp

Websites contain HTML code, CSS code, and

JavaScript code.

http://www.w3schools.com/js/js_best_practices.asp

5. Can there be multiple math objects in a webpage? What explains your
response?

Expanding Your Knowledge:

� Use the information discussed to create a function that changes the background
image of a webpage based on the month of the year.

Web Links:

� DOM Visualizer

http://bioub.github.io/d3.DOMVisualizer/

HTML DOM Style Object

http://www.w3schools.com/jsref/dom_obj_style.asp

JavaScript String Reference

http://www.w3schools.com/jsref/jsref_obj_string.asp

JavaScript Math Reference

http://www.w3schools.com/jsref/jsref_obj_math.asp

UML Tutorial

http://www.tutorialspoint.com/uml/

Unified Modeling Language

https://en.wikipedia.org/wiki/Unified_Modeling_Language

E-unit: JavaScript OOP and DOM

Page 29 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780015

http://bioub.github.io/d3.DOMVisualizer/
http://www.w3schools.com/jsref/dom_obj_style.asp
http://www.w3schools.com/jsref/jsref_obj_string.asp
http://www.w3schools.com/jsref/jsref_obj_math.asp
http://www.tutorialspoint.com/uml/
https://en.wikipedia.org/wiki/Unified_Modeling_Language

