Programming Languages

THERE ARE MANY computer
programming languages
in use today. It is important to
understand the strengths and
weakness of each language
to make an educated choice
when selecting a computer
programming language for an
application.

/s

Objective:

m Summarize common computer programming languages, differentiate between
programming languages and create content using programming languages.

Key Terms:

-8' Assembler Fourth generation Procedural

Assembly Language language Programming
Compiler Integrated Design Procedure or function
Cross-platform Environment (IDE) Second generation
Development Interpreter language
Fifth generation Mnemonic Source code file
language Object code file Third generation
First generation OOP (Object Oriented language
language Programming)

Commonly Used
Programming Languages

Computer programs can be written in one of many different programming languages. Each
programming language has certain key features, along with advantages and disadvantages.
These need to be understood before developing an application in a programming language.

. E-unit: Programming Languages
E‘tunlt' Page 1l €@ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

SUMMARIZE COMMON
COMPUTER PROGRAMMING LANGUAGES

In this section you will look at popular programming languages in use today and understand
their advantages and disadvantages.

What Is a Computer Programming Language?

A computer program contains instructions that can be executed by a computer. These
instructions can be written in several different formats. The end goal of the two sets of instruc-
tions is the same. However, the first format provides instructions that are more detailed than
those listed for the second set of instructions. The first set of instructions is more specific, and
individual steps can be modified if needed. For example, the pot may be filled up to the three-
quarters mark, instead of the half
way mark as shown in the instruc-
tions. The second set of instructions
seem simpler. However, this set is Format #1.
harder to modify because it has made
assumptions along the way. For
example, it is hard to ascertain the
level of water in the pot, because it is
not explicitly stated in the instruc-

tions. Selecting a computer program-
ming language to solve a problem 1s a2 FIGURE 1. Here are different formats for providing instructions to boil water.

« Go to counter.

* Pick up pot.

« Take pot to faucet.

« Fill with water up to halfway mark in pot.
* Move pot to stove.

« Start stove.

» Wait until water reaches 100°C.

+ Pl ith)
Format #2 ace pOfE with water on s'nge
 Heat until water starts boiling.

similar process. If the application

requires very specific sets of instructions, a
computer language that allows for detailed
specifications is chosen, such as C or
C++. If, on the other hand, the goal is to
complete a task, without providing detail, a

J
§
computer language that allows for high- SCHDEIEHIIENE /
|
/
1’4
|
1 4
\/\

First Generation |kttt

» Assembly language

level instructions is chosen, such as

Python.

e C,C++
e Java, C#

Computer Languages Classified
by Generation

.+ SQL
Computer languages have been in use ~ * Vendor specific tools
since the 1940s. Since the first program
was developed and executed, many com-
puter programming languages have been th Generatio
developed. Computer languages are classi-

fied by generation.

 Not fully implemented

FIGURE 2. The 5 generations of computer programming languages.

o E-unit: Programming Languages
E‘tunlt' Page 2 ¢ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

First Generation Language (1GL)

When computers were first developed, programs were created in machine code. Machine
code is referred as a First Generation Language. Machine code executed directly on a
computer and is composed of instructions in binary notation, using 0’s and 1’s. 1GL languages
are not used much anymore because they are difticult to develop and modify.

Second Generation Language (2GL)

The main difticulty with creating programs in machine code is that binary codes for
instructions are difficult to remember. This lead to be creation of Assembly language,
which is a Second Generation Language. In an Assembly language program, each
machine code instruction is coded as a mnemonic. A mnemonic is written in alphabets, mak-
ing it easier to read a program in Assembly than the corresponding program in machine code.
See FIGURE 3. It shows mnemonics for a few machine code instructions for the x86 chip.
Mnemonics are easier to remember than binary sequences. However, assembly language pro-
grams cannot execute in a computer. The statements in an assembly language program need to
be converted into machine code. The program that converts an assembly language program
into machine code is called an Assembler. Typically, 1 line of assembly language code trans-
lates to 1 machine code instruction. Moving away from 1GL languages introduces a level of
complexity to the programming process. When working with machine code, we create modity
and maintain a single file that contains machine code instructions. With Assembler programs,
we now need to maintain 3 programs. These are the assembly language program that we
coded, the Assembler program to convert our program into machine code, and the machine
code program created by the Assembler program.

Machine Code Machine Code Assembly Language

Instruction in Hex Mnemonic
1100 0110 C6 MOV
0000 0010 02 ADD
0001 0110 16 PUSH

FIGURE 3. Mnemonics for a few machine code instructions for the x86 chip.

Third Generation Language (3GL)

Developing programs in Assembly requires knowledge of the instruction set of the underly-
ing chip, since Assembly language provides nothing more than text “short-cuts” or mnemonics
for a binary machine code instruction. Assembly language mnemonics differ from chip to chip.
For example, the x86 chip implements a mnemonic called MOV, while IBM Assembler uses
the mnemonic MVC. Therefore, Assembly programs need to be changed as they are moved
from platform to platform. In the late 1950s, Third Generation Languages were devel-

o E-unit: Programming Languages
E‘tunlt' Page3 € www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

oped. These languages are more C++ code Assembly language code

programmer friendly and easier to [3nt main() main: # @main
code. See FIGURE 4. It shows { push rbp
lines of code in Assembly language int num_classes; mov rbp, rsp

. . num_classes = 5; Xor eax, eax
and the corresponding code in mov dword ptr [Fbp - 4], ©
C++, a popular 3GL language. As return 9; mov dword ptr [rbp - 8], 5
can be seen, the C++ code is } POE rbp

re

shorter and easier to read. Nearly
all popular languages in use today,

FIGURE 4. Lines of code in Assembly language and the corresponding code
SUCh as C’ C++ ’ C#a Java’ and in C++, a popular 3GL language. As can be seen, the C++ code is shorter

JavaScript are all considered 3GL ~ and easier to read.

languages. 3GL programs cannot

be executed at the machine level. They need to be converted into machine code to be executed.
The program that performs the conversion is called a compiler or an interpreter.

Fourth Generation Language (4GL)

A Fourth Generation Language is a language that allows for creation of programs that
are shorter in length than programs in a 3GL language. There is no strict definition of features
that need to be implemented to label a programming language as a 4GL. Database languages,
such as SQL(Structured Query Language) arc considered 4GL languages. SQL is a vendor
neutral language that is used to retrieve information from databases. It is a high-level language.
SQL statements need to be converted into machine code before they can be executed, but a
programmer who issues a SQL command does not need to do so; the SQL engine performs
that task. Other 4GL languages in the market are vendor specific. For example, the SAS and

DIGGING DEEPER...

UNCOVERING ADDITIONAL FACTS:
What Programming Languages Have Fallen Out of Favor?

New computer languages seem to be popping up every day. Some of these newer languages
have replaced languages that were popular in the past. One such language is Perl. Perl was a
widely used scripting language in the 80s. Its use has declined, and Python has gained popular-
ity.

Perl is a highly flexible language and code can be written using different styles. The Perl lan-
guage is based on the philosophy “There is more than one way to do it”. This means that Perl
programs are difficult to modify, especially if the program was written in a style that the modifier
was unfamiliar with. Python, on the other hand, has rigid rules on how code should be written.
This made Python easier to learn, since code could only be written in one way and made it eas-
ier to read code written by someone else.

To learn more about why Perl lost popularity visit https://www.youtube.com/watch?v=

YFGdRC8XhuQ.
|
. E-unit: Programming Languages
ﬂ-unlt' Page 4 €@ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

https://www.youtube.com/watch?v=yFGdRC8XhuQ
https://www.youtube.com/watch?v=yFGdRC8XhuQ

SPSS applications provide high-level languages of their own to perform statistical and data
analysis. But one vendor’s 4GL code cannot be used on another vendor’s platform.

Fifth Generation Language (5GL)

Programmers develop code to solve a problem using a 3GL or 4GL. Before writing code,
the programmer must break down the problem into a series of steps and write code to imple-
ment each step in the chosen programming language. A Fifth Generation Language can be
provided high level, general input, and it generates the steps to solve the problem and the code
to implement the logic. While there are a couple of 5GL languages used in the field of Artificial
Intelligence, there are no fully functional, general purpose 5GL languages today. Studies have
shown that a human is required to develop logic and algorithms; this step cannot be performed
by a computer autonomously.

Popular Languages in Use Today

The most commonly used languages are predominantly 3GL languages, with some 4GL
languages used for specialized purposes. FIGURE 5 shows the most commonly used languages
of today, along with their generation and usage in the industry. Languages may be classified
using different features. For example, languages may be compiled or interpreted. A language
may support functional decomposition, while another language may support the Object-Ori-
ented paradigm. These classification modes are discussed later in this E-unit.

Language Generation Usage

C 2l Operating Systems, embedded systems

C++ 3GL Games, Languages

Java 3GL General purpose language

JavaScript 3GL Client-side programs on the web, Server-
side programs on webservers

PHP 3GL Server-side programs on web servers

Python 3GL General purpose language used in scientific
and data analytics apps

Ruby 3GL Server-side programs on web servers

SAS 4GL Used for statistical analysis

sqQL 4GL Used to work with databases

FIGURE 5. The most commonly used languages, along with their generation and usage in the industry.

What Is an IDE?

When code 1s developed in a 3GL, it is saved in a file. This file is referred to as the source
code file. The source code file is written using english-like words and can be modified in any
text editor. The source code file is converted into machine code using a compiler or an inter-

. E-unit: Programming Languages
EL-unlt' Page5 € www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

preter. An Integrated Design Environment
makes the process of developing programs in a

3GL and converting them into machine code

easier. An IDE is a graphical tool that enhances

the software development process. A C++
program written using the Visual Studio IDE
can be edited using the Eclipse IDE without
any issues. The underlying source code file is
not dependent upon the IDE used.

DIFFERENTIATE BETWEEN
PROGRAMMING LANGUAGES

« Visual Studio

G * Eclipse

* Eclipse

Java » Netbeans

« IDLE
e PyCharm

FIGURE 6. Popular IDEs in use today and the languages

In this section, you will learn to classify lan-

guages using various criteria.

Compiled vs Interpreted Languages

that they support.

3GL languages are written in english-like text and stored in source code files. They cannot
be executed directly in a computer and must be converted into machine code which can be

executed. The conversion from source

code to machine code is performed by
one of 2 programs. These 2 programs
are the language compiler and lan-
guage interpreter.

Compiled Languages

A compiler is a special program
that converts source code into
machine code. If the compiler detects

Create Object Code

Create Source Compile Source
Code File Code File

Create Object

Code File

Execute Object Code File

even a single error in the source code,

the object code file is not created.
Once machine code has been created,
it is saved in a file which is referred to

Make Changes to Program

as the object code file. When a
change needs to be made to the pro-

Recreate Object

Compile Source
Code File

Code File

gram, it is made to the source code file
and the compile process is performed
again to generate a new object code
file. See FIGURE 7. It depicts the
steps to create an object file and to
modify it. The object code file gener-

Execute Object Code File

FIGURE 7. The steps to create an object file and to modify it.

F;(—unit.

Copyright © by CAERT, Inc. — Reproduction by subscription only.

E-unit: Programming Languages
Page 6 ¢ www.MyCAERT.com

780019

ated by the compile process can be executed as many times as needed. The source code file is
not needed during its execution. Most commercial applications are distributed in object code
format. Since object code cannot be read—it is in machine code format—it may be distributed
without fear that a user can retrieve code from it and modity it. However, if the source code
file is lost or deleted, the program may no longer by modified. Therefore, source code control
mechanisms need to be in place to ensure that source code is maintained safely. Compilers are
platform specific. For example, a C++ compiler written for the Windows platform produces
machine code that can only run on a Windows machine. To create object code for a Linux
machine, the C+ + source code must be recompiled on the Linux machine to create object
code for the Linux platform.

Interpreted Languages

Interpreted languages use a different approach. An interpreter reads only one line at a time
from the source code file. If the line is error free, it converts the line into machine code and
executes it, before proceeding to the next line in the source code file. When the interpreter
finds an error in the source code, the translation to machine code stops. The generated object
code is not stored. This is shown in FIGURE 8. When the program needs to be re-executed,
the interpreter, reads the source code once again and translates a source code into machine
code and then executes it line by line. The translation process is performed each time the pro-

Interpret and Execute Code

lee10100161

cint (my name,
T
]

p 9010100101 : -
num classes) y of classes = 12 ia
t(y
_ Delete
machine
code

Make Changes to Program

classes = 12 -'i.lt}‘t;(:‘y name,

t(" 0010100101

' Change Delete
machine
code

FIGURE 8. How does an interpreter work?

Led1e100101

. E-unit: Programming Languages
E‘unlt' Page 7 € www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

gram executes. When a program needs to be modified, changes are made to the source code file
and the interpreter converts it into machine code, line by line, and executes each individual
line of machine code. FIGURE 9 compares compilers and interpreters. The main advantage of
compiled programs is that once the object code file has been created, executing it is very fast.
Maintaining and testing interpreted programs is easier, since there is only 1 file to maintain.
The Java programming language uses a combination of both a compiler and an interpreter to
create applications. A Java source code file is compiled into a bytecode file, which is half-way
between source code and object code. The bytecode file is platform independent and can be

Compiler Interpreter
Speed of | Creating machine code Creating machine code one
conversion to | is time consuming. line at a time is time
machine code consuming.
Speed of | Once object code has Since translation to
execution | been created, it executes | machine code is performed
at high speed. each time, execution is

slower than a compiler.

Ease of use | Compilation fails even if | Process proceeds until an
there is a single mistake | error is encountered,
in source code file. making testing easier.

File | Need to maintain two Only need to maintain one
maintenance | files—source code file file—the source code file.
issues | @nd object code file.

FIGURE 9. Comparison of compilers and interpreters.

used on both Windows and Linux plat-

forms. Bytecode is not 100% machine Language | Interpreted | Compiled

code. It is converted into machine code C# V]
at run time using an interpreter called

the Java Virtual Machine. There are Java |k M M
virtual machines for nearly all platforms BEVELIITT V]

today. Most of the languages used in
web development are interpreted. See

M

FIGURE 10 for classification of web Python |Z[
development languages. Java is consid-
pment languages. J Ruby M
ered a compiled and an interpreted lan-
guage Since lt iS Compiled to bytecode FIGURE 10. Classification of web development languages. Java is
hich is i d # hich i considered a compiled and an interpreted language since it is
whicn 18 mterprete .C , which 1s compiled to bytecode which is interpreted. C#, which is developed
developed by Microsoft, is Compiled by Microsoft, is compiled while the remaining languages are
. .. interpreted.
while the remaining languages are
interpreted.
. E-unit: Programming Languages
EL-unlt' Page 8 €@ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

Procedural vs. Object Oriented Languages

Computer programs are written to solve problems. A problem is broken down into the
input information provided to the programmer, and the process required to transform the
input values into the required output values. The process used to perform transformation may
follow one of 2 approaches. The 2 approach are referred to as Procedural programming and
Object Oriented Programming.

Procedural Programming

In the early days of programming, developing solutions to problems followed a top-down
approach. A problem was broken into smaller pieces in a repetitive process, until a piece was a
problem that could be solved using program code. The piece, which was a portion of the prob-
lem to be solved, was referred to as a procedure or function. The problem was eventually
solved by assembling all the procedures that were written and executing them in the correct
order. Consider the logic to create a password based upon the first character of the first name,
last character of the last name, and a random number. FIGURE 11 shows this problem broken
into 4 procedures. Obtain the first name and return its first character. Obtain last name and
return the last character. Generate a random number. Concatenate the values returned by the 3
procedures and return it. The order in which these functions are invoked or used is docu-
mented in a hierarchy chart. The process to determine the result, user id, emphasizes the pro-
cess that needs to be followed. Therefore, this approach is referred to as procedural pro-
gramming. Most 3GL languages, such as C, C++, and JavaScript support functional
programming. It is possible to create complex functions that take in multiple inputs and gener-

Create

User ID

O O O 0

Return first Return last two Generate Return
character of characters of a random user id
first name last name number
8 . Determine Take in values
= fir?ckr?alr%e 1 Take in —{ lower bounds | [returned by first
ast name of range three procedures
Retrieve its | Determine | | Determine Concatenate
| first character its length upper bounds | = tnom o
of range calculate user id
Retrieve Obtain
— last two — random number
characters within range
FIGURE 11. Logic to create a password.
. E-unit: Programming Languages
ﬂ-unlt' Page 9 € www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

Create

User ID

© & @ 0

Return first Return last two Generate Return
two characters characters of a random user id
of first name last name number
7 . Determine Take in values
= fir-?ckrfalrrr]we 1 Take in ~| lower bounds | - returned by first
ast name of range three procedures
| | Determine its | || Determine | | Deterbmlned | Cotr;]cate? it
length its length upper bounds emio
of range calculate user id
Retrieve its Retrieve Obtain
— first two — last two — random number
characters characters within range

FIGURE 12. How are changes made to procedures?

ate outputs. However, procedural programming has drawbacks. They are difficult to modity
and changes higher up in the hierarchy chart of functions may requires major changes in func-
tions that are downstream in the hierarchy chart. For example, consider our password creation
algorithm. Suppose that we wish to change the logic to create the password so that the first 2
characters of the first name are concatenated to a random number, followed by last 2 characters
of the last name. This requires changes in some of the functions, along with the order in which
they are used as shown in FIGURE 12. Another drawback with procedural programming is
that heavy emphasis is placed on process while less attention is paid to data. This is contrary to
how organizations behave. The most important asset in an IT shop is the data. Procedural pro-
gramming values processes over data.

Object Oriented Programming Languages

As disadvantages of procedural programming became more apparent, there was a push to
develop new paradigms for developing programs. This led to the development of OOP
(Object Oriented Programming) philosophy, culminating in the development of the
Simula and Smalltalk programming languages. In OOP, primary emphasis is placed on objects.
Objects represent entities in the computer application. For example, in the password example,
there can be an object named password. In a college environment, there will be objects to rep-
resent students, teacher, classrooms, etc. Any “thing” that needs to be incorporated into a com-
puter application is an object. FIGURE 13 shows objects that are likely to be modeled in an
application that runs in a school. Each object is represented as an oval shape. Objects interact
with one another and this is depicted using arrows in the diagram. Objects also serve as reposi-

. E-unit: Programming Languages
ﬂ-unlt' Page 10 ¢ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

s
_ @&

Major
Major code,
department, ...

Course
Course number, name,
hours, ...

FIGURE 13. Objects that are likely to be modeled in an application

that runs in a school. Each object is represented as an oval shape.
Objects interact with one another and this is depicted using arrows
in the diagram.

tories of data. FIGURE 14 shows
objects, along with their data points. In
OOP, an object owns and controls its
data. FIGURE 15 lists languages used in
web development and their OOP
behavior. Java is a truly OOP language
and is completely object oriented. The
other languages support procedural pro-
gramming and OOP.

FIGU

Web apps are platform independent
since they run in a browser window. A
web app performs the same in a Win-
dows machine, a Mac machine, an
Android phone and an iPhone. This is
because web apps are developed in
HTML, CSS (Cascading Style Sheets)
and JavaScript, and all 3 of these lan-
guages are interpreted by the browser
software. Mobile apps, on the other

Language

Languages Used in Web App and Mobile App Environments

FIGURE 14. Objects in a college application, along with their data
points. In OOP, an object owns and controls its data.

Supports
ooP
Programming

|

Supports
Procedural
Programming

M
|
M

RE 15. O0Ps support in web development languages.

Mobile Apps

Android

- Java
» JavaScript
 Python

~ @

iPhone

JavaScript

hand, are not universal. A mobile app on
an iPhone may look the same as the app
on an Android phone, but the code run-

FIGURE 16. Programming languages used in web apps and mobile
apps.

» Objective C
o Swift

~ @

Beunit

Copyright © by CAERT, Inc. — Reproduction by subscription only.

E-unit: Programming Languages
Page 11 ¢ www.MyCAERT.com

780019

FURTHER EXPLORATION...

ONLINE CONNECTION:
Creating Android Apps Using App Inventor for Android

Creating mobile apps for an Android can be fun using the App Inventor for Android software
app. This app was developed by Massachusetts Institute of Technology (MIT) as a method to
introduce young students to computer programming. It provides a block-based environment to
develop code. You can create a fully functional app by dragging and dropping blocks to imple-
ment logic. App Inventor for Android allows non-programmers to learn about programming, app
development, and logic implementation. MIT plans to release the App Inventor for iOS app soon.

To learn more about App Inventor for Android, visit https://appinventor.mit.edu/explore/index-
2.html.

ning on the two phones are completely different. This is because the languages used to develop
mobile apps are platform dependent. FIGURE 16 shows programming languages used in web
apps and mobile apps. There are numerous programming languages to choose from when
developing Mobile apps. The most popular language for developing Android apps is Java. The
most popular languages for developing apps for the iPhone are and Objective C and Swift.

CREATE CONTENT USING PROGRAMMING LANGUAGES

Content creation for web apps and mobile apps are significantly different because different
languages are used for each of the two. When learning a new programming language, it is cus-
tomary to create a program that displays the text “Hello World”, and the program is referred to
as the “Hello World” program. Accordingly, this section develops the HelloWorld web app and
mobile app.

Web Apps

Web apps are rendered on the display
device with browser software. The page
displayed to the user is a result of 3 tefh— web App
nologies. FIGURE 17 shows the tasks
performed by each of the 3 technologies. [[|
All web apps are required to have 2
HTML content. Additionally, CSS code HTML CSS JavaScri pt
may be included to specify how the
HTML should be displayed. Any content L
on the page that is dependent upon logic,
such as displaying date, or changing the
background image based upon time of

Content LStyle L Logic

FIGURE 17. Tasks performed by each of the 3 technologies.

. E-unit: Programming Languages
EL-unlt' Page 12 ¢ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

https://appinventor.mit.edu/explore/index-2.html
https://appinventor.mit.edu/explore/index-2.html

day, must be implemented
using code in the JavaScript
programming language. A
web app can be coded in a
single page or can be broken
down into multiple files.
Good programming practice
indicates that HTML, CSS
and JavaScript be maintained
in separate files. This allows
for reuse of files in other web
apps. See FIGURE 18. It
shows code for a web app that
displays the text “Hello
World” in the browser and
the color of the text changes
when the mouse moves over
the text . This web app’s out-
put is not exciting, but dem-
onstrates the code for imple-
menting the app. To keep the
example simple, the html file
for the web app includes the
CSS code and the JavaScript
code. The web app is imple-
mented in a single file called
web_app.html. Lines 8-20
contain CSS code and lines
21-26 contain JavaScript code.
The logic in the JavaScript
code populates the text to be
placed inside a div element
called h1Area. Web app do

Mobile Apps

and methodologies.

web_app.html Code

Output in browser

1 <!doctype html>

2

3 <html lang="en">

4 <head>

5 <meta charset="utf-8">

6

7 <title>Hello World Web App!</title>

8 <style>

9 body {

10 background-color: khaki;

11 }

12

13 h1 { CSS Code
14 color: green; «
15 text-shadow: 3px 3px 3px silver;

16 }

17 hl:hover {

18 color:red;

19

20 </style>

21 <script > —JavaScript
22 function displayMessage(){ Code
23 document.getElementById('hlArea').innerHTML =

24 "<h1>Hello World!</h1>"

25 }

26 </script>

27 </head>

28

29 <body onload ="displayMessage();">

30 <div id = "hlArea">

31 </div>

32 </body>

33 </html>

@ Hello World Web App!

C O @ Fie|C

i1 Apps

Hello World!

@ Hello World Web App!

C O O@Fie|d

22 Apps

Héllo World!

FIGURE 18. Code for a web app that displays the text “Hello World” in the browser
and the color of the text changes when the mouse moves over the text . This web
app’s output is not exciting, but demonstrates the code for implementing the app.

not need to be developed using specialized software. Code for web apps can be written using a
free editor such as Notepad which ships with all Windows computers. As can be seen in the
code, web apps require knowledge of HTML, CSS and JavaScript.

Mobile apps for an Android and an iPhone are developed using different languages, IDE

Ekunit.

E-unit: Programming Languages
Page 13 ¢ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

Android Platform

Android devices run an operating system called Android Operating System. The most pop-
ular language for developing apps on Android is Java. The Java compiler creates bytecode and
there is a Java Virtual Machine for the Android platform that will interpret bytecode into
machine language. When the Java language was developed in 1996, mobile apps had not been
invented. Therefore, the language does not natively support Android features. However, there
are libraries that can be used to make use of functionality needed to create a mobile app.
Android apps are developed in an IDE called Android studio that can be downloaded from

https://developer.android.com/studio for free. This installs the IDE (Integrated Development
Environment) for development of Java Android Apps. Even for a simple mobile app, many dif-
ferent files are created in Java and XML. As can be seen, creating a mobile app for the Android
platform required strong skills in Java and a knowledge of the XML (Extensible Markup
Language) language.

Code in Application

Android_mobile_app app src main java com example hello_world_app € MainActivity
Android € = & — © MainActivityjava

app package com.example.hello world app;

* 1: Project

manifests

we AndroidManifest.xml import ...

java . :
J o public class MainActivity extends AppCompatActivity {
com.example.hello_world_app

© MainActivity

com.example.hello_world_app of protected void onCreate(Bundle savedInstanceState) {

< ExamplelnstrumentedTest super.onCreate (savedInstanceState);

* Resource Manager

setContentView(R.layout.activity main);:
com.example.hello_world_app =

generatedJava }

Output in

drawable

Simulated Phone

mipmap

K Build Variants

values
¥ Gradle Scripts
build.gradle
build.gradle (1

2= 7. Structure

yi1 gradle-wrapper.properties

= proguard-rules.pro

yi1gradle.properties
settings.gradle

) Favorites

411 local.properties

FIGURE 19. The HelloWorld project in the Android Studio App.

Ekunit.

E-unit: Programming Languages
Page 14 ¢ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

https://developer.android.com/studio

iPhone Platform

iPhone mobile apps can only be developed on a Mac using the Xcode IDE. iPhone apps can
be developed using the Objective-C or Swift language. Developing an iPhone HelloWorld app is
like the steps followed for the Android app. The IDE performs the background work to bring in
libraries that are needed to create a mobile app. Creating apps for the iPhone requires knowledge
of Objective-C, which is a C variant that supports objects. However, it is different from industry
standard C and C+ +. Knowledge of C and C+ + is needed to learn Objective-C.

Code in the Applicatio

+, Melloworld

wWorldAlert showl;
(taken from https://www.appcoda.com/hello-world-build-your-first-iphone-app/)

Output in Simulated Phone

FIGURE 20. Screens with Objective-C, along with output screens on a phone simulator in Xcode, the IDE
used to develop iPhone apps. (Screenshots were copied from https://www.appcoda.com/hello-world-build-
your-first-iphone-app/.)

Cross-platform Development for Mobile Apps

Creating apps for the Mobile arena can be time consuming since native Android code and
native 10S code are incompatible with one another. There has been a movement in the indus-

. E-unit: Programming Languages
ﬂ-unlt' Page 15 4 www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only.

780019

https://www.appcoda.com/hello-world-build-your-first-iphone-app/
https://www.appcoda.com/hello-world-build-your-first-iphone-app/

everywhere model. This is referred to as

Cross-platform Development. React : Javascript _ .
There are several products that allow for | Xamarin C# Visual Studio
creating a mobile app once and deploy- PhoneGap JavaScript
ing it on both the Android and 1OS plat- JQuery Mobile | JavaScript
form.
FIGURE 21. Popular cross-platform development frameworks and the
language used in each of the platforms.
Summary:

AN

There are many programming languages in use today. Understanding the pros and
cons of each language is important because application development and perfor-
mance are dependent upon the language that the application is coded in. Addition-
ally, not all languages run on all platforms. Once an application has been deployed,
changing the language that the program has been developed with requires rewriting
the entire application. Therefore, acquiring a deep knowledge about computer lan-
guages is an important skill.

Checking Your Knowledge:

Why are 3GL languages more popular than 2GL languages?

Why are compiled programs more efficient that interpreted programs?
What led to the popularity of interpreted languages?

Why are web apps easier to deploy?

A

Why are cross-platform mobile development tools used?

Expanding Your Knowledge:

Q

Use the knowledge in this E-unit to create a presentation explaining the language
you will choose to pursue further. Explain your reasoning and indicate the types of
applications you will develop (web apps, server-side apps or mobile apps).

Web Links:

Hello World! Build Your First IPhone App
https://www.appcoda.com/hello-world-build-your-first-iphone-app/

What Is a Generation Language
https://www.computerhope.com/jargon/num/1gl.htm

X86 Opcode and Instruction Reference Home
http://ret.x86asm.net/coder32.html#xC6

. E-unit: Programming Languages
EL-unlt' Page 16 ¢ www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

https://www.appcoda.com/hello-world-build-your-first-iphone-app/
https://www.computerhope.com/jargon/num/1gl.htm
http://ref.x86asm.net/coder32.html#xC6

