
Programming Languages

THERE ARE MANY computer

programming languages

in use today. It is important to

understand the strengths and

weakness of each language

to make an educated choice

when selecting a computer

programming language for an

application.

Objective:

� Summarize common computer programming languages, differentiate between

programming languages and create content using programming languages.

Key Terms:

�

Commonly Used
Programming Languages

Computer programs can be written in one of many different programming languages. Each

programming language has certain key features, along with advantages and disadvantages.

These need to be understood before developing an application in a programming language.

E-unit: Programming Languages

Page 1 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Assembler

Assembly Language

Compiler

Cross-platform

Development

Fifth generation

language

First generation

language

Fourth generation

language

Integrated Design

Environment (IDE)

Interpreter

Mnemonic

Object code file

OOP (Object Oriented

Programming)

Procedural

Programming

Procedure or function

Second generation

language

Source code file

Third generation

language



SUMMARIZE COMMON

COMPUTER PROGRAMMING LANGUAGES

In this section you will look at popular programming languages in use today and understand

their advantages and disadvantages.

What Is a Computer Programming Language?

A computer program contains instructions that can be executed by a computer. These

instructions can be written in several different formats. The end goal of the two sets of instruc-

tions is the same. However, the first format provides instructions that are more detailed than

those listed for the second set of instructions. The first set of instructions is more specific, and

individual steps can be modified if needed. For example, the pot may be filled up to the three-

quarters mark, instead of the half

way mark as shown in the instruc-

tions. The second set of instructions

seem simpler. However, this set is

harder to modify because it has made

assumptions along the way. For

example, it is hard to ascertain the

level of water in the pot, because it is

not explicitly stated in the instruc-

tions. Selecting a computer program-

ming language to solve a problem is a

similar process. If the application

requires very specific sets of instructions, a

computer language that allows for detailed

specifications is chosen, such as C or

C++. If, on the other hand, the goal is to

complete a task, without providing detail, a

computer language that allows for high-

level instructions is chosen, such as

Python.

Computer Languages Classified

by Generation

Computer languages have been in use

since the 1940s. Since the first program

was developed and executed, many com-

puter programming languages have been

developed. Computer languages are classi-

fied by generation.

E-unit: Programming Languages

Page 2 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Format #1

Format #2

Format #1

Format #2

�

�

�

�

�

�

�

Go to counter.

Pick up pot.

Take pot to faucet.

Fill with water up to halfway mark in pot.

Move pot to stove.

Start stove.

Wait until water reaches 100°C.

�

�

Place pot with water on stove.

Heat until water starts boiling.

FIGURE 1. Here are different formats for providing instructions to boil water.

FIGURE 2. The 5 generations of computer programming languages.



First Generation Language (1GL)

When computers were first developed, programs were created in machine code. Machine

code is referred as a First Generation Language. Machine code executed directly on a

computer and is composed of instructions in binary notation, using 0’s and 1’s. 1GL languages

are not used much anymore because they are difficult to develop and modify.

Second Generation Language (2GL)

The main difficulty with creating programs in machine code is that binary codes for

instructions are difficult to remember. This lead to be creation of Assembly language,

which is a Second Generation Language. In an Assembly language program, each

machine code instruction is coded as a mnemonic. A mnemonic is written in alphabets, mak-

ing it easier to read a program in Assembly than the corresponding program in machine code.

See FIGURE 3. It shows mnemonics for a few machine code instructions for the x86 chip.

Mnemonics are easier to remember than binary sequences. However, assembly language pro-

grams cannot execute in a computer. The statements in an assembly language program need to

be converted into machine code. The program that converts an assembly language program

into machine code is called an Assembler. Typically, 1 line of assembly language code trans-

lates to 1 machine code instruction. Moving away from 1GL languages introduces a level of

complexity to the programming process. When working with machine code, we create modify

and maintain a single file that contains machine code instructions. With Assembler programs,

we now need to maintain 3 programs. These are the assembly language program that we

coded, the Assembler program to convert our program into machine code, and the machine

code program created by the Assembler program.

Third Generation Language (3GL)

Developing programs in Assembly requires knowledge of the instruction set of the underly-

ing chip, since Assembly language provides nothing more than text “short-cuts” or mnemonics

for a binary machine code instruction. Assembly language mnemonics differ from chip to chip.

For example, the x86 chip implements a mnemonic called MOV, while IBM Assembler uses

the mnemonic MVC. Therefore, Assembly programs need to be changed as they are moved

from platform to platform. In the late 1950s, Third Generation Languages were devel-

E-unit: Programming Languages

Page 3 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Machine Code
Instruction

Machine Code
in Hex

Assembly Language
Mnemonic

1100 0110

0000 0010

0001 0110

C6

02

16

MOV

ADD

PUSH

FIGURE 3. Mnemonics for a few machine code instructions for the x86 chip.



oped. These languages are more

programmer friendly and easier to

code. See FIGURE 4. It shows

lines of code in Assembly language

and the corresponding code in

C++, a popular 3GL language. As

can be seen, the C++ code is

shorter and easier to read. Nearly

all popular languages in use today,

such as C, C++, C#, Java, and

JavaScript are all considered 3GL

languages. 3GL programs cannot

be executed at the machine level. They need to be converted into machine code to be executed.

The program that performs the conversion is called a compiler or an interpreter.

Fourth Generation Language (4GL)

A Fourth Generation Language is a language that allows for creation of programs that

are shorter in length than programs in a 3GL language. There is no strict definition of features

that need to be implemented to label a programming language as a 4GL. Database languages,

such as SQL(Structured Query Language) are considered 4GL languages. SQL is a vendor

neutral language that is used to retrieve information from databases. It is a high-level language.

SQL statements need to be converted into machine code before they can be executed, but a

programmer who issues a SQL command does not need to do so; the SQL engine performs

that task. Other 4GL languages in the market are vendor specific. For example, the SAS and

E-unit: Programming Languages

Page 4 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

FIGURE 4. Lines of code in Assembly language and the corresponding code

in C++, a popular 3GL language. As can be seen, the C++ code is shorter

and easier to read.

DIGGING DEEPER…

UNCOVERING ADDITIONAL FACTS:

What Programming Languages Have Fallen Out of Favor?

New computer languages seem to be popping up every day. Some of these newer languages

have replaced languages that were popular in the past. One such language is Perl. Perl was a

widely used scripting language in the 80s. Its use has declined, and Python has gained popular-

ity.

Perl is a highly flexible language and code can be written using different styles. The Perl lan-

guage is based on the philosophy “There is more than one way to do it”. This means that Perl

programs are difficult to modify, especially if the program was written in a style that the modifier

was unfamiliar with. Python, on the other hand, has rigid rules on how code should be written.

This made Python easier to learn, since code could only be written in one way and made it eas-

ier to read code written by someone else.

To learn more about why Perl lost popularity visit https://www.youtube.com/watch?v=

yFGdRC8XhuQ.

https://www.youtube.com/watch?v=yFGdRC8XhuQ
https://www.youtube.com/watch?v=yFGdRC8XhuQ


SPSS applications provide high-level languages of their own to perform statistical and data

analysis. But one vendor’s 4GL code cannot be used on another vendor’s platform.

Fifth Generation Language (5GL)

Programmers develop code to solve a problem using a 3GL or 4GL. Before writing code,

the programmer must break down the problem into a series of steps and write code to imple-

ment each step in the chosen programming language. A Fifth Generation Language can be

provided high level, general input, and it generates the steps to solve the problem and the code

to implement the logic. While there are a couple of 5GL languages used in the field of Artificial

Intelligence, there are no fully functional, general purpose 5GL languages today. Studies have

shown that a human is required to develop logic and algorithms; this step cannot be performed

by a computer autonomously.

Popular Languages in Use Today

The most commonly used languages are predominantly 3GL languages, with some 4GL

languages used for specialized purposes. FIGURE 5 shows the most commonly used languages

of today, along with their generation and usage in the industry. Languages may be classified

using different features. For example, languages may be compiled or interpreted. A language

may support functional decomposition, while another language may support the Object-Ori-

ented paradigm. These classification modes are discussed later in this E-unit.

What Is an IDE?

When code is developed in a 3GL, it is saved in a file. This file is referred to as the source

code file. The source code file is written using english-like words and can be modified in any

text editor. The source code file is converted into machine code using a compiler or an inter-

E-unit: Programming Languages

Page 5 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

FIGURE 5. The most commonly used languages, along with their generation and usage in the industry.



preter. An Integrated Design Environment

makes the process of developing programs in a

3GL and converting them into machine code

easier. An IDE is a graphical tool that enhances

the software development process. A C++

program written using the Visual Studio IDE

can be edited using the Eclipse IDE without

any issues. The underlying source code file is

not dependent upon the IDE used.

DIFFERENTIATE BETWEEN

PROGRAMMING LANGUAGES

In this section, you will learn to classify lan-

guages using various criteria.

Compiled vs Interpreted Languages

3GL languages are written in english-like text and stored in source code files. They cannot

be executed directly in a computer and must be converted into machine code which can be

executed. The conversion from source

code to machine code is performed by

one of 2 programs. These 2 programs

are the language compiler and lan-

guage interpreter.

Compiled Languages

A compiler is a special program

that converts source code into

machine code. If the compiler detects

even a single error in the source code,

the object code file is not created.

Once machine code has been created,

it is saved in a file which is referred to

as the object code file. When a

change needs to be made to the pro-

gram, it is made to the source code file

and the compile process is performed

again to generate a new object code

file. See FIGURE 7. It depicts the

steps to create an object file and to

modify it. The object code file gener-

E-unit: Programming Languages

Page 6 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

C++

Java

Python

C++

Java

Python

�

�

Visual Studio

Eclipse

�

�

Eclipse

Netbeans

�

�

IDLE

PyCharm

FIGURE 6. Popular IDEs in use today and the languages

that they support.

Create Object Code

Make Changes to Program

Create Object Code

Make Changes to Program

Create Source
Code File

Compile Source
Code File

Create Object
Code File

Execute Object Code File

Change Source
Code File

Compile Source
Code File

Recreate Object
Code File

Execute Object Code File

FIGURE 7. The steps to create an object file and to modify it.



ated by the compile process can be executed as many times as needed. The source code file is

not needed during its execution. Most commercial applications are distributed in object code

format. Since object code cannot be read—it is in machine code format—it may be distributed

without fear that a user can retrieve code from it and modify it. However, if the source code

file is lost or deleted, the program may no longer by modified. Therefore, source code control

mechanisms need to be in place to ensure that source code is maintained safely. Compilers are

platform specific. For example, a C++ compiler written for the Windows platform produces

machine code that can only run on a Windows machine. To create object code for a Linux

machine, the C++ source code must be recompiled on the Linux machine to create object

code for the Linux platform.

Interpreted Languages

Interpreted languages use a different approach. An interpreter reads only one line at a time

from the source code file. If the line is error free, it converts the line into machine code and

executes it, before proceeding to the next line in the source code file. When the interpreter

finds an error in the source code, the translation to machine code stops. The generated object

code is not stored. This is shown in FIGURE 8. When the program needs to be re-executed,

the interpreter, reads the source code once again and translates a source code into machine

code and then executes it line by line. The translation process is performed each time the pro-

E-unit: Programming Languages

Page 7 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Interpret and Execute Code

Make Changes to Program

Interpret and Execute Code

Make Changes to Program

FIGURE 8. How does an interpreter work?



gram executes. When a program needs to be modified, changes are made to the source code file

and the interpreter converts it into machine code, line by line, and executes each individual

line of machine code. FIGURE 9 compares compilers and interpreters. The main advantage of

compiled programs is that once the object code file has been created, executing it is very fast.

Maintaining and testing interpreted programs is easier, since there is only 1 file to maintain.

The Java programming language uses a combination of both a compiler and an interpreter to

create applications. A Java source code file is compiled into a bytecode file, which is half-way

between source code and object code. The bytecode file is platform independent and can be

used on both Windows and Linux plat-

forms. Bytecode is not 100% machine

code. It is converted into machine code

at run time using an interpreter called

the Java Virtual Machine. There are Java

virtual machines for nearly all platforms

today. Most of the languages used in

web development are interpreted. See

FIGURE 10 for classification of web

development languages. Java is consid-

ered a compiled and an interpreted lan-

guage since it is compiled to bytecode

which is interpreted. C#, which is

developed by Microsoft, is compiled

while the remaining languages are

interpreted.

E-unit: Programming Languages

Page 8 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Compiler Interpreter

Speed of
conversion to

machine code

Speed of
execution

Ease of use

File
maintenance

issues

Creating machine code
is time consuming.

Once object code has
been created, it executes
at high speed.

Compilation fails even if
there is a single mistake
in source code file.

Need to maintain two
files—source code file
and object code file.

Creating machine code one
line at a time is time
consuming.

Since translation to
machine code is performed
each time, execution is
slower than a compiler.

Process proceeds until an
error is encountered,
making testing easier.

Only need to maintain one
file—the source code file.

FIGURE 9. Comparison of compilers and interpreters.

Language Interpreted Compiled

C#

Java

JavaScript

PHP

Python

Ruby

�

�

�

�

�

�

�

FIGURE 10. Classification of web development languages. Java is

considered a compiled and an interpreted language since it is

compiled to bytecode which is interpreted. C#, which is developed

by Microsoft, is compiled while the remaining languages are

interpreted.



Procedural vs. Object Oriented Languages

Computer programs are written to solve problems. A problem is broken down into the

input information provided to the programmer, and the process required to transform the

input values into the required output values. The process used to perform transformation may

follow one of 2 approaches. The 2 approach are referred to as Procedural programming and

Object Oriented Programming.

Procedural Programming

In the early days of programming, developing solutions to problems followed a top-down

approach. A problem was broken into smaller pieces in a repetitive process, until a piece was a

problem that could be solved using program code. The piece, which was a portion of the prob-

lem to be solved, was referred to as a procedure or function. The problem was eventually

solved by assembling all the procedures that were written and executing them in the correct

order. Consider the logic to create a password based upon the first character of the first name,

last character of the last name, and a random number. FIGURE 11 shows this problem broken

into 4 procedures. Obtain the first name and return its first character. Obtain last name and

return the last character. Generate a random number. Concatenate the values returned by the 3

procedures and return it. The order in which these functions are invoked or used is docu-

mented in a hierarchy chart. The process to determine the result, user id, emphasizes the pro-

cess that needs to be followed. Therefore, this approach is referred to as procedural pro-

gramming. Most 3GL languages, such as C, C++, and JavaScript support functional

programming. It is possible to create complex functions that take in multiple inputs and gener-

E-unit: Programming Languages

Page 9 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Create
User ID

1

Return first
character of
first name

2

Return last two
characters of

last name

3

Generate
a random
number

4

Return
user id

Take in
first name

Take in
last name

Determine
lower bounds

of range

Take in values
returned by first
three procedures

Retrieve its
first character

Determine
its length

Determine
upper bounds

of range

Concatenate
them to

calculate user id

Obtain
random number

within range

Retrieve
last two

characters

FIGURE 11. Logic to create a password.



ate outputs. However, procedural programming has drawbacks. They are difficult to modify

and changes higher up in the hierarchy chart of functions may requires major changes in func-

tions that are downstream in the hierarchy chart. For example, consider our password creation

algorithm. Suppose that we wish to change the logic to create the password so that the first 2

characters of the first name are concatenated to a random number, followed by last 2 characters

of the last name. This requires changes in some of the functions, along with the order in which

they are used as shown in FIGURE 12. Another drawback with procedural programming is

that heavy emphasis is placed on process while less attention is paid to data. This is contrary to

how organizations behave. The most important asset in an IT shop is the data. Procedural pro-

gramming values processes over data.

Object Oriented Programming Languages

As disadvantages of procedural programming became more apparent, there was a push to

develop new paradigms for developing programs. This led to the development of OOP

(Object Oriented Programming) philosophy, culminating in the development of the

Simula and Smalltalk programming languages. In OOP, primary emphasis is placed on objects.

Objects represent entities in the computer application. For example, in the password example,

there can be an object named password. In a college environment, there will be objects to rep-

resent students, teacher, classrooms, etc. Any “thing” that needs to be incorporated into a com-

puter application is an object. FIGURE 13 shows objects that are likely to be modeled in an

application that runs in a school. Each object is represented as an oval shape. Objects interact

with one another and this is depicted using arrows in the diagram. Objects also serve as reposi-

E-unit: Programming Languages

Page 10 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Create
User ID

1

Return

of first name

first
two characters

2

Return last two
characters of

last name

3

Generate
a random
number

4

Return
user id

Take in
first name

Take in
last name

Determine
lower bounds

of range

Take in values
returned by first
three procedures

Determine its
length

Retrieve its
first two

characters

Determine
its length

Determine
upper bounds

of range

Concatenate
them to

calculate user id

Obtain
random number

within range

Retrieve
last two

characters

3 2

FIGURE 12. How are changes made to procedures?



tories of data. FIGURE 14 shows

objects, along with their data points. In

OOP, an object owns and controls its

data. FIGURE 15 lists languages used in

web development and their OOP

behavior. Java is a truly OOP language

and is completely object oriented. The

other languages support procedural pro-

gramming and OOP.

Languages Used in Web App and Mobile App Environments

Web apps are platform independent

since they run in a browser window. A

web app performs the same in a Win-

dows machine, a Mac machine, an

Android phone and an iPhone. This is

because web apps are developed in

HTML, CSS (Cascading Style Sheets)

and JavaScript, and all 3 of these lan-

guages are interpreted by the browser

software. Mobile apps, on the other

hand, are not universal. A mobile app on

an iPhone may look the same as the app

on an Android phone, but the code run-

E-unit: Programming Languages

Page 11 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Major

Course

Student

Password

Instructor

Club

FIGURE 13. Objects that are likely to be modeled in an application

that runs in a school. Each object is represented as an oval shape.

Objects interact with one another and this is depicted using arrows

in the diagram.

Major

Course

Student

Password

Instructor

Club

Major code,
department, …

ID, name, address, …

Course number, name,
hours, …

Value, length

Name, office, phone, …

Name, president, …

FIGURE 14. Objects in a college application, along with their data

points. In OOP, an object owns and controls its data.

Language

Supports
Procedural

Programming

Supports
OOP

Programming

Java

JavaScript

PHP

Python

�

�

�

�

�

�

�

FIGURE 15. OOPs support in web development languages.

Web Apps Mobile AppsWeb Apps Mobile Apps

HTML

CSS

JavaScript

Android

�

�

�

Java

JavaScript

Python

�

�

Objective C

Swift

iPhone

FIGURE 16. Programming languages used in web apps and mobile

apps.



ning on the two phones are completely different. This is because the languages used to develop

mobile apps are platform dependent. FIGURE 16 shows programming languages used in web

apps and mobile apps. There are numerous programming languages to choose from when

developing Mobile apps. The most popular language for developing Android apps is Java. The

most popular languages for developing apps for the iPhone are and Objective C and Swift.

CREATE CONTENT USING PROGRAMMING LANGUAGES

Content creation for web apps and mobile apps are significantly different because different

languages are used for each of the two. When learning a new programming language, it is cus-

tomary to create a program that displays the text “Hello World”, and the program is referred to

as the “Hello World” program. Accordingly, this section develops the HelloWorld web app and

mobile app.

Web Apps

Web apps are rendered on the display

device with browser software. The page

displayed to the user is a result of 3 tech-

nologies. FIGURE 17 shows the tasks

performed by each of the 3 technologies.

All web apps are required to have

HTML content. Additionally, CSS code

may be included to specify how the

HTML should be displayed. Any content

on the page that is dependent upon logic,

such as displaying date, or changing the

background image based upon time of

E-unit: Programming Languages

Page 12 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

FURTHER EXPLORATION…

ONLINE CONNECTION:

Creating Android Apps Using App Inventor for Android

Creating mobile apps for an Android can be fun using the App Inventor for Android software

app. This app was developed by Massachusetts Institute of Technology (MIT) as a method to

introduce young students to computer programming. It provides a block-based environment to

develop code. You can create a fully functional app by dragging and dropping blocks to imple-

ment logic. App Inventor for Android allows non-programmers to learn about programming, app

development, and logic implementation. MIT plans to release the App Inventor for iOS app soon.

To learn more about App Inventor for Android, visit https://appinventor.mit.edu/explore/index-

2.html.

Web AppWeb App

HTML CSS JavaScript

Content Style Logic

FIGURE 17. Tasks performed by each of the 3 technologies.

https://appinventor.mit.edu/explore/index-2.html
https://appinventor.mit.edu/explore/index-2.html


day, must be implemented

using code in the JavaScript

programming language. A

web app can be coded in a

single page or can be broken

down into multiple files.

Good programming practice

indicates that HTML, CSS

and JavaScript be maintained

in separate files. This allows

for reuse of files in other web

apps. See FIGURE 18. It

shows code for a web app that

displays the text “Hello

World” in the browser and

the color of the text changes

when the mouse moves over

the text . This web app’s out-

put is not exciting, but dem-

onstrates the code for imple-

menting the app. To keep the

example simple, the html file

for the web app includes the

CSS code and the JavaScript

code. The web app is imple-

mented in a single file called

web_app.html. Lines 8-20

contain CSS code and lines

21-26 contain JavaScript code.

The logic in the JavaScript

code populates the text to be

placed inside a div element

called h1Area. Web app do

not need to be developed using specialized software. Code for web apps can be written using a

free editor such as Notepad which ships with all Windows computers. As can be seen in the

code, web apps require knowledge of HTML, CSS and JavaScript.

Mobile Apps

Mobile apps for an Android and an iPhone are developed using different languages, IDE

and methodologies.

E-unit: Programming Languages

Page 13 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

JavaScript
Code

CSS Code

FIGURE 18. Code for a web app that displays the text “Hello World” in the browser

and the color of the text changes when the mouse moves over the text . This web

app’s output is not exciting, but demonstrates the code for implementing the app.



Android Platform

Android devices run an operating system called Android Operating System. The most pop-

ular language for developing apps on Android is Java. The Java compiler creates bytecode and

there is a Java Virtual Machine for the Android platform that will interpret bytecode into

machine language. When the Java language was developed in 1996, mobile apps had not been

invented. Therefore, the language does not natively support Android features. However, there

are libraries that can be used to make use of functionality needed to create a mobile app.

Android apps are developed in an IDE called Android studio that can be downloaded from

https://developer.android.com/studio for free. This installs the IDE (Integrated Development

Environment) for development of Java Android Apps. Even for a simple mobile app, many dif-

ferent files are created in Java and XML. As can be seen, creating a mobile app for the Android

platform required strong skills in Java and a knowledge of the XML (Extensible Markup

Language) language.

E-unit: Programming Languages

Page 14 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Code in Application

Output in
Simulated Phone

FIGURE 19. The HelloWorld project in the Android Studio App.

https://developer.android.com/studio


iPhone Platform

iPhone mobile apps can only be developed on a Mac using the Xcode IDE. iPhone apps can

be developed using the Objective-C or Swift language. Developing an iPhone HelloWorld app is

like the steps followed for the Android app. The IDE performs the background work to bring in

libraries that are needed to create a mobile app. Creating apps for the iPhone requires knowledge

of Objective-C, which is a C variant that supports objects. However, it is different from industry

standard C and C++. Knowledge of C and C++ is needed to learn Objective-C.

Cross-platform Development for Mobile Apps

Creating apps for the Mobile arena can be time consuming since native Android code and

native iOS code are incompatible with one another. There has been a movement in the indus-

E-unit: Programming Languages

Page 15 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

(taken from https://www.appcoda.com/hello-world-build-your-first-iphone-app/)

Code in the Application

Output in Simulated Phone

FIGURE 20. Screens with Objective-C, along with output screens on a phone simulator in Xcode, the IDE

used to develop iPhone apps. (Screenshots were copied from https://www.appcoda.com/hello-world-build-

your-first-iphone-app/.)

https://www.appcoda.com/hello-world-build-your-first-iphone-app/
https://www.appcoda.com/hello-world-build-your-first-iphone-app/


try towards a develop-once-deploy-

everywhere model. This is referred to as

Cross-platform Development.

There are several products that allow for

creating a mobile app once and deploy-

ing it on both the Android and iOS plat-

form.

Summary:

� There are many programming languages in use today. Understanding the pros and
cons of each language is important because application development and perfor-
mance are dependent upon the language that the application is coded in. Addition-
ally, not all languages run on all platforms. Once an application has been deployed,
changing the language that the program has been developed with requires rewriting
the entire application. Therefore, acquiring a deep knowledge about computer lan-
guages is an important skill.

Checking Your Knowledge:

� 1. Why are 3GL languages more popular than 2GL languages?

2. Why are compiled programs more efficient that interpreted programs?

3. What led to the popularity of interpreted languages?

4. Why are web apps easier to deploy?

5. Why are cross-platform mobile development tools used?

Expanding Your Knowledge:

� Use the knowledge in this E-unit to create a presentation explaining the language
you will choose to pursue further. Explain your reasoning and indicate the types of
applications you will develop (web apps, server-side apps or mobile apps).

Web Links:

� Hello World! Build Your First IPhone App

https://www.appcoda.com/hello-world-build-your-first-iphone-app/

What Is a Generation Language

https://www.computerhope.com/jargon/num/1gl.htm

X86 Opcode and Instruction Reference Home

http://ref.x86asm.net/coder32.html#xC6

E-unit: Programming Languages

Page 16 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780019

Tool Name Language IDE

React

Xamarin

PhoneGap

JQuery Mobile

JavaScript

C#

JavaScript

JavaScript

Visual Studio

FIGURE 21. Popular cross-platform development frameworks and the

language used in each of the platforms.

https://www.appcoda.com/hello-world-build-your-first-iphone-app/
https://www.computerhope.com/jargon/num/1gl.htm
http://ref.x86asm.net/coder32.html#xC6

