
Boolean Logic

COMPUTER PROGRAMS contain

large sections of code that

only execute under specific

circumstances. For example, a

student is awarded an “A” grade

only when their points equal or are

greater than 90. Logic is

implemented using decision

structures with Boolean

expressions. It is, therefore,

important to understand Boolean

algebra because it allows you to

construct logically sound Boolean

expressions.

Objective:

� Explain Boolean Expressions and understand Boolean Algebra.

Key Terms:

�

Boolean Logic

Boolean logic is based upon the work of George Boole, an English mathematician. He was
born in 1815 and died in 1864 and created a system of logic based on the operators, “AND”,
“NOT”, and “OR”. This system of logic is called “Boolean logic” and was named after him.
Boolean logic lent itself to creation of computers that understand 2 binary states. Therefore,
computer programming logic depends on understanding the principles of Boolean logic.

E-unit: Boolean Logic

Page 1 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

ASCII Collating

sequence

Boolean Algebra

Boolean Expression

Logic Gates

Logical Operators

Relational Operators

Truth Tables

EXPLAIN BOOLEAN EXPRESSIONS

Boolean expressions are used in computer programs to compare 2 values and to evaluate the
result of the comparison operation. These values can be held in literals or in variables. Most
programming languages require that the 2 entities being compared be of the same datatype.
For example, a string may be compared to another string, but a string may not be compared to
a number. Logic is implemented based upon the result of the comparison operation. This sec-
tion discusses the parts of a Boolean expression in detail.

Relational Operators

Two operands of the same datatype are compared to each other using Relational Opera-

tors. See FIGURE 1. It shows the list of relational operators commonly used in modern lan-
guages today. Some of the relational operators, such as the greater-than-equal-to operator, are
composed of 2 symbols from the keyboard. This is because in the early days of programming,
the keyboard used to key in programs was the same one used by typewriters, and it did not
have the �?, �?, or the �? symbols on it. Therefore, a combination of symbols found on the
keyboard was used to represent
certain operations, such as the
>= operator. No space must be
left between the 2 symbols and
the order of the 2 symbols is sig-
nificant. For example, the >=
operator cannot be replaced by
the =< operator. The “!” and
the “=” symbols are combined as
the “not-equals” operator. The
last 2 operators shown in
FIGURE 1 are used in loosely
typed languages, such as
JavaScript and PHP. These oper-
ators check both the datatype and
value of the 2 entities being com-
pared.

Structure of a Boolean Expression

A simple Boolean expression consists of 2 operands of the same datatype connected by a
relational operator. The 2 operands can be literals or variables.

Boolean Expressions with Literals

See FIGURE 2 for examples of Boolean Expressions built around literals. Valid Boolean
expressions contain operands of the same data type. Numeric literals are compared with one

E-unit: Boolean Logic

Page 2 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

Relational
Operator Description

Operator Used
in Math

>

<

>=

<=

==

!=

===

!==

Greater than

Less than

Greater than equal to

Less than equal to

Equals

Not equal to

Strict equals

String not equal to

>

<

=

≥

≤

≠

There is no space
between the

individual symbols.

FIGURE 1. Relational operators.

another, and string literals are com-
pared with one another. Invalid
Boolean expressions compare
operands of different data types. For
example, 12 cannot be compared
with “15”. “15” is treated as a string
literal even though its contents are
numeric. Comparing “Spring” with
spring causes the system to treat
spring as a variable since it is not sur-
rounded by quotes. The system will
attempt to locate a variable with the
name spring and raise an error if it
cannot be found in the program.

Boolean Expressions with

Variables and Literals

See FIGURE 3 for Boolean expressions with variables and literals. Valid statements are
those where the data types of the 2 operands match. For example, the stu_name variable can be

E-unit: Boolean Logic

Page 3 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

FIGURE 2. Relational operators.

FIGURE 3. Boolean expressions with variables and literals.

compared with the string literal “John” since the stu_name variable has been declared as a
String variable. Similarly, variables that are declared as numeric variables may be compared
with numeric literals. Invalid Boolean expressions are those where datatypes are dissimilar.
The stu_name String variable cannot be compared with the numeric literal 12, and the Integer
variable number_of_items cannot be compared with a string literal (even when the contents of
the String literal is a number). This principle is True when comparing 2 variables. A String
variable, such as stu_name, cannot be compared with a numeric variable, number_of_items.

Suggested Format of a Boolean Expression

See FIGURE 4. When developing Boolean expressions with variables and literals in a com-
puter program, it is customary to code the variable as the first operand and the literal as the
second operand. There are no conventions when both the operands are variables.

Comparing Non-Integer Values

When integer values are compared, their values are used in the Boolean expression. String
entities and float values are evaluated in a different manner and are discussed here in detail.

Comparison of 2 String Values

Computers do not natively understand any human language, including English. Therefore,
in order to process alphabets in a computer device, they must be converted into numbers. The
ASCII Collating sequence is used on PCs, Macs, and Unix/Linux machines, and it pro-
vides numeric values for all characters that can be keyed in via a keyboard. See FIGURE 5 for
the ASCII collating sequence characters and their numeric representations. For example, the

E-unit: Boolean Logic

Page 4 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

FIGURE 4. Suggested format of Boolean expressions.

alphabet “M” has a numeric value of 77, and the alphabet “m”
has a numeric value of 109. The ASCII collating sequence
plays an important when strings are compared. When 2 string
entities are compared, they are viewed as a sequence of num-
bers from the ASCII collating sequence. The numbers for
each individual character in the strings are compared. See
FIGURE 6. Example 1 shows the 2 Strings along with the
numeric values for each alphabet in the 2 strings. When 2
String entities are compared, the system starts the comparison
process from the left to the right, one character at a time. In
this example, the numeric values of “B” and “b” are compared,
and the “b” is deemed to be higher. The comparison process
stops at this point with the determination that “byte” is larger
than “Byte”. Example 2 compares 2 strings of unequal lengths.
The shorter string is padded with a blank in order to make the
2 string values of the same length. A space, too, has an ASCII
number associated with it. Since the numeric value of a space
is smaller than that of “s”, the string “Bytes” is considered
larger than “Byte”. As shown in Example 3, lengths of strings
do not affect string comparison. For example, the string “Mat”
is considered larger than “Able” since the numeric value of the
first character “M” is larger than that of “A”.

E-unit: Boolean Logic

Page 5 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

Taken from http://www.asciitable.com/

FIGURE 5. The ASCII collating sequence.

Numeric values
from the ASCII

collating sequence

FIGURE 6. Comparing strings.

Comparison of 2 Float Values

Comparing float values poses a challenge to computer programs. See FIGURE 7. In Exam-
ple 1, 2 float values are compared. They differ in digits maintained at the 11th, 12th, 13th and
14th place after the decimal point. When they are compared, the computer will conclude that
they are not equal. In Example 2, the difference between the 2 number is compared with
0.001. The difference is smaller that 0.001. This is the technique used to compare 2 float num-
bers. The difference of the 2 numbers is converted into an absolute value which makes it a
positive number. This difference is compared to the difference threshold of the program. For
example, when computing weights of 2 people, it is possible to write code that states that the
weight of 2 people is the same if their weights differs in the 4th place after the decimal point.

WHAT IS THE BOOLEAN ALGEBRA?

Boolean algebra is a formalized study of Boolean expressions and the rules that they obey.
The basic unit of Boolean algebra is a Boolean expression. Simple Boolean expressions may be
combined to create complex Boolean expressions and their result is explained by Boolean
algebra.

Value of a Boolean Expression

When 2 values are compared, the result of the comparison operation is either a yes or a no.
For example, when a person’s age is checked to see if it is greater than or equal to 21, the
answer is either a yes or a no. In Boolean terms, the answer is either a True or a False. There-
fore, a Boolean Expression has a value of True or False. Programming languages maintain
Boolean values in different formats as discussed below:

C and C++

The C programming language maintains Boolean values (True and False) in an integer.
False has a value of 0 and any non-zero value is True. When assigning a value of True to a vari-
able, 1 is typically used to represent True. C++, which is an enhanced version of C, contains a

E-unit: Boolean Logic

Page 6 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

FIGURE 7. Comparing float values.

bool datatype to hold Boolean values of True and False. However, C++ honors C’s represen-
tation of Boolean values as integers and understands 0 as False and non-zero values as True.

Java

Java contains a Boolean datatype that can hold only one of 2 values, True and False. Placing
Integers into a Boolean variable will raise an error.

Other Languages

Languages, such as JavaScript, have a more expansive view of True and False. In JavaScript,
a variable with no value in it is treated as False. An empty string is also considered False.

Boolean Logical Operators

Many real-world computer-based operations require that a value be compared with more
than one other value. For example, there may be a requirement to ensure that a test score fall
within a range. In such a case, the test score must be compared with the lower boundary value
and the upper boundary value. Computers, however, can only compare two values at a time.
When a value, such as a test score, must be checked to see if it is within a range, multiple
Boolean expressions must be coded and tested. Logical operators are used to combine simple
Boolean expressions to create a complex Boolean expression. See FIGURE 8 for the Logical
operators used to combine Boolean expressions. Some of the original symbols used by Boolean
algebra are not found on a keyboard. Therefore, computer programs like C, C++ and Java,
use the “&&” and “||” to represent the “and” and the “or” operators respectively. The “|”
symbol is referred to as the piping symbol, and its location on the keyboard is shown. Some
computer programming languages (such as Python) use “or”, “and”, and “not” for their logical
operators. This lesson uses “AND”, “OR” and “NOT” instead of Boolean and programming
operators. See FIGURE 9 for examples of combined Boolean expressions where one simple
Boolean expression is combined with another simple Boolean expression using Logical
operators.

E-unit: Boolean Logic

Page 7 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

FURTHER EXPLORATION…

ONLINE CONNECTION: Other Collating Sequences

The ASCII Collating sequence was introduced in this lesson. It provides numeric values for

each key found in e keyboard, such as letters A-Z, a-z, 0-9, and other special characters. How-

ever, it is not the only collating sequence used to store data on a computer. Mainframes use the

EBCDIC (Extended Binary Coded Decimal Interchange Code) collating sequence and Unicode is

gaining popularity with its ability to store emoji characters.

To learn more about ASCII, EBCDIC and Unicode, go to https://www.youtube.com/watch?v=

3kXLHLUhV5Q.

https://www.youtube.com/watch?v=3kXLHLUhV5Q
https://www.youtube.com/watch?v=3kXLHLUhV5Q

E-unit: Boolean Logic

Page 8 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

FIGURE 9. Complex Boolean expressions.

Logical
Operator

Symbol Used in
Programming
Languages

Symbols Used in
Boolean Algebra

Some of these symbols
are not present on a
standard keyboard.

AND

OR

NOT

&&

||

! ~

+

X *

FIGURE 8. Logical operators.

Basic Boolean Algebra

Boolean Algebra studies Boolean
expressions and their behavior when
they are grouped into larger and more
complex expressions. In Boolean alge-
bra, each operand is a Boolean expres-
sion which can have only 1 of 2 values,
True or False. Boolean algebra uses 0
to represent False and 1 to represent
True. This in sharp contrast to “regu-
lar” algebra where operands can have
any numeric value. See FIGURE 10
for examples of regular algebra and
Boolean algebra. The variables used in
regular algebra can have any numeric value. In Boolean algebra, each operand is a Boolean
expression, as shown in the blue and orange callout boxes. Each Boolean expression evaluates
to True or False.

The AND Logical Operator

Boolean expressions can be
combined using the AND logical
operator. When 2 expressions are
combined using AND, there are
4 possible permutations possible.
The table that contains all possi-
ble permutations of 2 or more
Boolean expressions along with
the result of the combination is
called a Truth Table. The Truth
Table for the AND logical opera-
tor is shown in FIGURE 11. The
problem being addressed is
whether a person can go out for a
walk or not based upon the
answer to 2 questions. These are
whether it is sunny or not and
whether the temperature is more
than 70 degrees or not. Each of
these questions is a Boolean
expression that evaluates to True
or False. There are 4 permuta-
tions of the values of these 2

E-unit: Boolean Logic

Page 9 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

Regular Algebraic Expressions

Boolean Algebraic Expressionsx

12 > 10

y

8 > 10

FIGURE 10. “Regular” Algebra and Boolean Algebra.

The intersection
represents the

answer set.

Question: Can I Go Outside?

FIGURE 11. Truth Table for the AND logical operator.

Boolean expressions. When the “AND” logical operator is used, each individual Boolean
expression must evaluate to True for the combined expression to return a True. In the exam-
ple shown in FIGURE 11, the user can only walk on a warm, sunny day, which is possible
only when both Boolean expressions return True.

The OR Logical Operator

Boolean expressions can also be combined using the OR logical operator. The Truth Table
for the OR logical operator is shown in FIGURE 12. The problem being addressed is whether
to buy detergent or not based upon the answer to 2 questions. These are whether it is on sale
and whether the user is running low on detergent. These questions are based upon 2 Boolean
expression that evaluate to True or False. There are, once again, 4 permutations of the values
of these 2 Boolean expressions. When the “OR” logical operator is used, the result is False only
when both Boolean expressions evaluate to False. When either one of them is true, or when
they are both true, the result of the complex Boolean Expression is True.

E-unit: Boolean Logic

Page 10 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

Question: Should I Buy Detergent?

X y

When they are
both false, the
result is a False

When either
is true, the

result is a True

FIGURE 12. Truth Table for the OR logical operator.

The NOT Logical Operator

See FIGURE 13. It shows the Truth Table for evaluating the “NOT” logical operator. Only
1 Boolean expression is used in the example, and the “NOT” operator inverts or negates the
value of the Boolean expression. The Boolean expression checks the rating of a game and
returns True or False depending upon whether it has a “Mature” rating or not. The “NOT”
operator inverts the answer returned by the Boolean expression. If the Boolean expression
evaluates to True, the value of the expression after the usage of “NOT” is False.

Other Boolean Operators

Programming languages build most logic structures using the three basic Boolean operators
discussed above. However, there are other Boolean operators, and these are shown in
FIGURE 14. These are the XOR, NAND and NOR operators, and the figure shows the
Truth tables for each of operators. The XOR operator is used in some programming languages
to manipulate individual bits in a byte and belongs to a class of operators called bit-wise opera-
tors. The other Boolean operators are used in basic electronic classes to discuss hardware gates.

E-unit: Boolean Logic

Page 11 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

Question: Should I Buy the Game?
(It should not be an “M” rated game.)

x

When x evaluates
to False,

the result is True

FIGURE 13. Truth Table for the NOT logical operator.

Boolean Algebra and Logic Gates

Boolean algebra lends itself to the creation
of electronic devices. A Logic Gate is a
hypothetical electronics device that imple-
ments Boolean logic by controlling the flow
of electricity into a device. Logic gates can be
implemented using transistors or vacuum
tubes, and, theoretically, a computer can be
considered an aggregation of various Logic
gates. This section uses logic gates to graphi-
cally demonstrate Boolean expressions. See
FIGURE 15 for Boolean logical operators
and the symbols used to depict them as logic

E-unit: Boolean Logic

Page 12 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

(N
O

T
O

R
)

(N
O

T
A
N

D
)

(E
xc

lu
si

ve
 O

R
)

x y

x y

x y

FIGURE 14. Other Boolean operators.

Boolean Logical
Operator Logic Gate

AND

OR

NOT

FIGURE 15. Logic gates.

gates. See FIGURE 16 for examples of “AND”, “NOT”, and “OR” operators shown graphi-
cally using Logic gates.

Summary:

� Computer programs are coded with many different complex conditions that make
use of simple and complex Boolean expressions. These require a thorough knowl-
edge of relational and logical operators. When complex Boolean expressions are cre-
ated, truth tables must be developed to understand all outcomes of the expression.
This lesson helps develop an understanding of Boolean expressions, relational and
logical operators.

Checking Your Knowledge:

� 1. What is a Boolean expression?

2. How are string entities compared with one another?

E-unit: Boolean Logic

Page 13 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

FIGURE 16. Logic gate representations.

3. Describe the symbols used in programming languages to compare 2 values
with one another.

4. What operators are used to combine multiple Boolean expressions?

5. What is the purpose of the “NOT” operator?

Expanding Your Knowledge:

� Reflect upon an App that you use often. Create a PowerPoint presentation with 4-5
Boolean expressions used in the App. Share your PowerPoint presentation with the
rest of the class.

Web Links:

� Logic Gates Basics

https://youtu.be/Xi18hI1LqAA

This Simple Math Concept Went Nowhere For A Century And Then —
BOOM — Computers

https://www.businessinsider.com/boolean-algebra-computers-2014-7

Understanding ASCII and Unicode (GCSE

https://youtu.be/5aJKKgSEUnY

E-unit: Boolean Logic

Page 14 � www.MyCAERT.com

Copyright © by CAERT, Inc. — Reproduction by subscription only. 780026

https://youtu.be/Xi18hI1LqAA
https://www.businessinsider.com/boolean-algebra-computers-2014-7
https://youtu.be/5aJKKgSEUnY

