ILLINOIS STATE BOARD OF EDUCATION	Samples to Success Sample items provide valuable insight into how students engage with different texts, tasks, and contexts by highlighting the types of opportunities they need for success in the classroom. These items offer a shared reference point for understanding proficiency expectations, complementing the assessment's role in measuring learning. Analyzing items alongside performance data can enable educators to gain a deeper understanding of students' strengths and areas for growth. Students thrive in environments rich with diverse materials, challenges that vary in task type, and multiple avenues for demonstrating understanding. High-quality instruction, aligned with the learning goals, is the most effective way to support students' growth and prepare them for success.	Curriculum Concernent Curriculum Curriculum Curriculum Curriculum Curriculum School Curriculum Sinstruction Sinstruction
MATHEMATICS HIGH SCHOOL FUNCTIONS	The sample questions included in this rubric are a blend of those typical of the ACT a classroom instruction, aimed at reinforcing and developing the skills assessed on the category test knowledge of function definition, notation, representation, and applica not limited to linear, radical, piecewise, polynomial, and logarithmic functions. Stude functions, as well as find and apply important features of graphs. This document cont from ACT alignment guides: © ACT Education Corp.	and others that are suitable for ACT. The questions in the functions ation. Questions may include but are ents will manipulate and translate
	Functions	

	Functions				
Below Proficient	Approaching Proficient	Proficient	Above Proficient		
If $f(x) = (3x + 7)^2$, then $f(1) = ?$	Let the function f be defined as $f(x) = 5x^2 - 7(4x + 3)$. What is the value of	In the standard (x, y) coordinate plane, a line intersects the y-axis at $(0,2)$ and	A cosine function is shown in the standard (x, y) coordinate plane below.		
A. 10	<i>f</i> (3)?	contains the point (8,5). What is the slope of the line?	$\wedge {\wedge} \wedge$		
B. 16	A18	$A.\frac{3}{8}$	$ \frac{1}{1}$		
C. 58	B26	P ²	\vee + \vee		
D. 79	C33 <mark>D60</mark>	B. $\frac{2}{3}$	One of the following equations represents this function. Which one?		
E. 100	E75	$C.\frac{5}{6}$	A. $y = \cos\left(\frac{x}{3}\right)$		
		D. $\frac{6}{5}$	B. $y = 2 \cos (3x)$ C. $y = 3 \cos (\frac{x}{3})$		
		E. $\frac{8}{3}$	D. $y = 3 \cos(\frac{x}{2})$ E. $y = 3 \cos(2x)$		

	Fun	ictions	
Below Proficient	Approaching Proficient	Proficient	Above Proficient
The 1 st term in the geometric sequence below is -13. If it can be determined, what is the 6 th term?	The function $f(c) = \frac{9}{5}c + 32$ gives the temperature, $f(c)$ degrees Fahrenheit, that corresponds to c degrees Celsius. To the nearest 0.1°F, what Fahrenheit	Manish drove from Chicago to Baton Rouge. At 8:00 a.m., he was 510 km from Baton Rouge. At 1:00 p.m., he was 105 km from Baton Rouge. Which of the	In the standard (x, y) coordinate plane below, a shaded square is shown with vertices at (2,3), (2,4), (3,3), and (3,4). Two lines, $y = rx$ and $y = sx$, each intersect
-13, 26, -52, 104, -208	temperature corresponds to 13°C?	following values is closest to Manish's average speed, in kilometers per hour,	the shaded square at exactly 1 point. Given that $r \neq s$, what is the positive difference
A416	A. 33.8°F	from 8:00 a.m. to 1:00 p.m.?	of r and s?
B312		A. 58	
C. 312	B. 45.0°F	B. 68	2
<mark>D. 416</mark>	C. 46.8°F	5.00	o 1 2 3 4 x
E. Cannot be determined from the given information	D. 55.4°F	<mark>C. 81</mark>	A. $\frac{1}{6}$
	E. 81.0°F	D. 94	B. $\frac{1}{3}$
		E. 102	c ¹
			C. $\frac{1}{2}$
			D. $\frac{2}{3}$
			<mark>E. 1</mark>

		ctions	
Below Proficient	Approaching Proficient	Proficient	Above Proficient
f(x) = 2x + 3, what is $f(5)$?	Given the function $f(x) = \sqrt{x-2}$, which	Let $f(x) = x^2 + 1$ and	If $f(x) = 3x - 5$, what is the inverse
. 10	of the following represents the domain of $f(x)$?	g(x)=2x-4.	function $f^{-1}(x)$?
) (x):	What is $(f \circ g)(x)$, the composition of	
13	A. $x \ge 0$	f and g ?	A. $\frac{x+5}{3}$
15	n. x = 0	A 2.2 2	
	B. $x \leq 0$	A. $2x^2 - 3$	B. $\frac{x-5}{3}$
17	5. x = 0	B. $4x^2 - 4x - 3$	B3
19	C. $x \ge 2$	D. $4x - 4x - 5$	
	_	C . $(2x - 4)^2 + 1$	C. $\frac{3x+5}{5}$
	D. x > 2		
		D. $2x^2 - 4x + 1$	D. $\frac{3x-5}{5}$
	E. <i>x</i> < 2		5
		E. $x^2 + 2x + 5$	×±2
			E. $\frac{x+3}{5}$