Illinois Evidence-Based Funding Formula Five-Year Evaluation

Illinois State Board of Education
Research and Evaluation Center

Spring 2022

Table of Contents

Executive Summary 4
Historical Context 4
Evaluative Study Design and Approach 4
Findings 5
Conclusion 10
Introduction 11
Purpose of Study and Research Questions 11
Definitions 13
Background 14
School Finance and Student Achievement Nationwide 14
History of Evidence-Based Funding Formula in Illinois 17
COVID-19 Pandemic and School Finance Reform 19
Literature Review 20
School Funding Ideologies 21
School Funding and Student Outcomes 22
Implementing Funding Legislation with Fidelity 23
Leading and Lagging Indicators of Student Achievement. 24
Evidence-Based Funding Formula Implementation 26
Illinois' Evidence-Based Funding Formula Explained 26
EBF Coding Error and Corrective Payments 32
Evidence-Based Funding Formula Since Passage 32
Quantitative Methodology 41
Quantitative Research Questions 41
Research Question 1 41
Research Question 2 41
Sample and Data 42
Sample 42
Data. 42
Data Limitations 44
Analyses 46
Quantitative Findings 47
RQ 1 Findings 47
RQ 2 Findings 73
Assessment Enrollment and Participation 73
Academic Achievement Proficiency Rates 80
Academic Behavior Indicator Rates 82
Qualitative Methodology 83
Qualitative Research Questions 83
Research Question 3 83
Research Question 4 83
Research Question 5 83
Sample Selection. 84
Initial Sample Selection 84
Participant Characteristics 86
Data Collection Tools 90
Survey 90
District Administrator and Principal Interviews 91
Educator Focus Groups 91
Analytical Approach 92
Survey Analysis 92
Interview and Educator Focus Group Analysis 92
Qualitative Findings 93
RQ 3 Findings 94
Who Drives the Decision-Making Process? 95
What Tools Were Used to Determine Resource Allocation? 96
Which Cost Factors Are Represented by Districts' Investments? 97
RQ 4 Findings 104
Changes to Staffing 106
Strategic Planning 108
Improving Instructional Quality 110
RQ5 Findings 112
COVID-19 Pandemic 113
No New Tier Funding in FY 2021 113
Challenges to Progress 115
Overall Effects of EBF 117
Discussion 119
Conclusion 122
References 125
Appendix A 130
Appendix B 132
Appendix C 134
Appendix D 136
Appendix E 140
Appendix F 149
Appendix G 165
Appendix H 173
Appendix I 175
Appendix J 177
Appendix K 184

Executive Summary

Historical Context

In 2017, Illinois replaced its former system for funding public schools by enacting the Evidence-Based Funding for Student Success Act, Public Act 100-0465. Henceforth referred to as Evidence-Based Funding, or EBF, the legislation significantly altered the way in which funding is distributed to public school districts in the state.

Prior to the enactment of EBF, Illinois had the most regressive school funding system in the nation, wherein higher poverty districts, on average, received less per pupil in state and local funding than the lowest poverty districts in the state (The Education Trust, 2018). The structure of the state's school funding system prior to EBF, called General State Aid (GSA), coupled with inadequate levels of state investment in K-12 education, caused local property tax revenue to become the primary funding source for districts. In doing so, the former system allowed gaps in funding between districts with the most and least property wealth to persist and grow. This is because districts with greater property wealth are able to generate large amounts of local funding through property tax revenue even without taxing at high rates, while districts with lower levels of property wealth are unable to generate sufficient revenue to provide basic resources to schools even at high tax rates. GSA did not effectively address this source of inequity in the disbursement of state funds, and it was not grounded in research and evidence about the actual costs associated with providing a high-quality education to students.

EBF was designed to address each of these shortcomings of the GSA approach, and beyond that "to ensure that by June 30, 2027, and beyond, this State has a kindergarten through grade 12 public education system with the capacity to ensure the educational development of all persons to the limits of their capacities in accordance with Section 1 of Article X of the Constitution of the State of Illinois" (Public Act 100-0465). The Public Act goes on to explain that the formula is intended to do so by quantifying the costs of a high-quality education for every district in the state based on research and accounting for the unique needs of their student population, considering variations in property wealth and local capacity to fund education as well as the district's current levels of funding, and distributing new state funds equitably by prioritizing the most underfunded districts.

The formula works by distributing new state funds in any given year to districts in an equitable manner, rather than redistributing funds from some districts to others; therefore, progress for any district -- and for the state as a whole -- toward full or "adequate" funding requires the state to invest additional funds in the formula each year. The statute sets a minimum amount of investment that is necessary to continue making progress toward full funding (a "Minimum Funding Level") of $\$ 350$ million. Since the passage of the EBF, the total EBF funds distributed were $\$ 366,610,000$ in fiscal year 2018, $\$ 300,022,360$ in FY 2019, $\$ 312,491,585$ in FY 2020, $\$ 0$ in FY21, and $\$ 300,000,000$ in FY 2022. Illinois will need to invest an additional estimated $\$ 4.6$ billion - that equates to about $\$ 911$ million per year for the next five years -- to fulfill statutory obligations to bring every district to 90% adequacy by 2027 (ISBE, 2021a).

Evaluative Study Design and Approach

The Evidence-Based Funding for Student Success Act charged the Professional Review Panel (PRP) with quintennial review of the "entire Evidence-Based Funding model, including an assessment of whether or not the formula is achieving State goals" (105 ILCS 5/18-8.15(i)). In
response to this broad directive, the PRP developed research questions aimed at determining how funds were being distributed through the state's new EBF formula and whether EBF is making progress toward such goals as increasing districts' Percent of Adequacy, equitably distributing money to districts with the highest levels of need, and improving student outcomes. The research questions are as follows:

1. To what extent did the Evidence-Based Funding formula distribute new state funds equitably to school districts each year?
2. Did growth in student achievement and other student outcome measures occur from the baseline 2017-18 school year through the 2020-21 school year in Illinois public schools?
3. To what extent were the EBF cost factors reflected in district expenditures from SY 201718 to SY 2018-19?
4. Among schools that improved, which systemic and organizational change elements were used to improve student performance and close opportunity gaps?
5. How do changes in funding and circumstances influence the implementation of EBF from year to year? What was the overall effect of EBF on districts?
Together, these questions are aimed at ascertaining whether the EBF formula is functioning as intended and effectuating its desired outcomes.

In order to answer these questions, both quantitative and qualitative analyses were employed. Quantitative analyses of data collected and published by the Illinois State Board of Education (ISBE) were employed to answer Research Questions 1 and 2, although limitations in the ability to draw causal conclusions about the relationship between funding and student outcomes so early in the implementation of a new funding model, as well as unforeseen impacts to student data resulting from the COVID-19 pandemic, precluded answering Research Question 2 at this time. In order to answer Research Questions 3, 4, and 5, qualitative methods were employed. The PRP and ISBE gathered survey and interview data from a sample of 27 Tier 1 school districts, among the most underfunded districts, from all over Illinois. Interviews with district administrators, principals, and educators provided a rich set of information about how each district has utilized the state funding it received through EBF over the last five years and how this funding has impacted their school community. Participants naturally referenced resource allocation and their district's financial situation prior to EBF, so an additional research question, deemed Research Question 0, was added ex post facto. As EBF was not implemented on a blank canvas, Research Question 0 focuses on pre-EBF conditions that are helpful in understanding the preexisting landscape of school finance from the viewpoint of district administrators, school principals, and educators. The next section briefly summarizes some of the high-level findings on each research question yielded by these analyses.

Findings

Research Question 0: Pre-EBF Conditions

- District and school leaders generally discussed struggling financially prior to the implementation of EBF. Due to underfunding, districts lacked up-to-date instructional materials, had unfilled staff positions, and were forced to cut programming. District administrators cited finally being able to fund certain measures that wealthier districts had been able to provide to their students for decades.
Research Question 1: To what extent did the Evidence-Based Funding formula distribute new state funds equitably to school districts each year? For the sake of clarity and specificity, Research

Question 1 was divided into three sub-questions; major findings for each of which are summarized below.
a. To what extent did EBF distribute new state funds to districts with the highest levels of need, as defined by those districts that are the furthest from full funding or "adequacy"?

- EBF effectively targeted new funds to the highest-need school districts - those districts furthest from their Adequacy Targets. In FYs 2018, 2019, 2020, and 2022, over 89.5% of funding went to school districts below 70 Percent of Adequacy. In other words, lower adequacy districts received a higher proportion of tier funding. For example, in FY 2018, districts with less than 60% adequacy accounted for 18.0% of students in the state but received 54.7% of tier funding. As average Percent of Adequacy increased between FY 2018 and FY 2022, the same dynamic holds; in FY 2022, districts in the 60\%69.99% adequacy band enrolled 33.8% of students in Illinois and received 58.1% of new tier funding. Finally, when looking at the change in average Percent of Adequacy since FY 2018, Tier 1 districts saw the greatest increase -- from 59.2% to 64.6% (+5.4 percentage points). Tier 2 and Tier 3 followed, increasing by 1.7 and 0.6 percentage points, respectively. EBF has clearly targeted state funds to the districts farthest from achieving full adequacy.
- Despite successfully driving new funds to the least well-funded districts, gaps in funding adequacy remain, including differences in funding levels between different regions of the state. The net change in the number of school districts in each tier within each region from SY 2018 to SY 2022 shows movement that is indicative of EBF tier funding effectively improving adequacy for school districts across the state. ${ }^{1}$ However, implementation of EBF has yet to fully eradicate the inequities between regions that were present when EBF was first implemented and persist across the observed time period. School districts in the Northeast region have a higher average Percent of Adequacy than those in the Southeast, Southwest, East Central, West Central, and Northwest regions. Until the formula is fully funded, these gaps are likely to persist.
b. To what extent did EBF distribute new state funds to districts serving the greatest number of students from low-income households and districts with the least property wealth/local resources?
- EBF is effectively disbursing tier funding in an equitable manner with respect to districts' proportions of low-income students. In FY 2018, 39.5\% of new tier funding went to districts with the highest proportion of low-income students ($62.4 \%-100 \%$ lowincome), which serve 16% of Illinois' student population. This trend continued in subsequent years. Conversely, districts with the lowest proportion of low-income students ($0.4 \%-19.5 \%$ low-income each year since FY 2018) received an average of 2.0% of new tier funding.
- In completing a similar analysis based on the districts' levels of property wealth, EBF was again shown to target funds to the highest-need districts. Districts in the lowest quintile of property wealth received anywhere from 32.0% to 37.4% of the total new tier funding each year since FY 2018 while enrolling an average of about 15.5% of students in Illinois. Conversely, districts in the highest quintile of property wealth, which enrolled an average of 15.3% of students in Illinois, received between 3.8% and 5.3% of new tier funding between FY 2018 and FY 2022.

[^0]c. To what extent did EBF distribute new state funds in a manner consistent with the goal of improving racial equity in the availability of school resources?

- A review of metrics for SY 2019 and SY 2020 showed that districts with lower Percent of Adequacy generally had larger proportions of students of color. Districts in Tier 1 contain higher percentages of Black and Hispanic students, while districts in Tiers 2, 3, and 4 contain higher proportions of White students. Specifically, Tiers 2, 3, and 4 enroll approximately double the percentage of White students than do Tier 1 districts. Similar trends can be seen when sorting the data according to adequacy band, where the higher bands ($70 \%-79.99 \%$ and up) contain higher proportions of White students and the lower bands ($\leq 60 \%$ and $60 \%-69.99 \%$) contain higher proportions of students of color.
- Across all races and ethnicities, students in Tier 1 districts received the highest amounts of new tier funding per pupil. Per pupil tier funding was more dependent on the tier of the district the student was enrolled in than the student's race or ethnicity.
- Most races and ethnicities saw increases in per pupil tier funding between SY 2019 and SY 2020. Only Hispanic or Latino (-\$6.81/pupil) and students of Two or More Races ($-\$ 2.53 /$ pupil) in Tier 1 districts saw a drop in per pupil funding between the two school years. Other than those two student groups, Tier 1 students generally saw the greatest increases in per pupil new tier funding for all races/ethnicities decreasing to the smallest increases for Tier 4 students.
Research Question 2: Did growth in student achievement and other student outcome measures occur from the baseline 2017-18 school year through the 2020-21 school year in Illinois public schools?
- Expected delays between the onset of funding and improvement in academic outcomes, which are lagging indicators, have been lengthened by the effects of the COVID-19 pandemic on schools and students, rendering it impossible to draw valid causal conclusions about the impact of EBF funds on student outcomes during this five-year period. Analysis for RQ2 is highly impacted by the COVID-19 pandemic. The original intention of this research question was to determine whether EBF funds are associated with improved student academic and behavioral outcomes, but the pandemic significantly disrupted education in ways that yield this type of analysis little meaning. Both student behavioral indicators (including metrics such as attendance, absenteeism, and truancy rates; high school dropout rates; and suspension and expulsion rates) and student academic indicators (including standardized test scores) were impacted; notably, state assessments were not administered in SY 2020 and testing was delayed in SY 2021. This prevents any meaningful causation analysis due to a limited data set.
- Additional factors related to the pandemic further challenge any meaningful trend analysis. Student enrollment declined more than expected, test participation rates dropped for the entire student population (with disproportionate decreases among students of color), test participation is not representative of the demographics of the state, and the assessment data are not based on random samples during the observed time period of this evaluative study.
- Even absent the pandemic, student assessment scores are considered lagging indicators that would only be likely to show causal effects years after sustained EBF implementation. At best, the impacts of EBF on student outcomes would only present themselves several years, at a minimum, after the increase in funding began, suggesting that five years would be early to begin to see large scale effects. Regardless, the overlap between EBF implementation and the COVID-19 pandemic ultimately renders any trend analysis
correlating EBF and student outcomes inappropriate and misleading given the extenuating circumstances. Future iterations of this study will include a comprehensive analysis of student outcomes to understand the impacts of EBF on students' academic outcomes across the state. However, it is worth considering that the impacts of the pandemic on education, as well as the confounding impacts of significant amounts of one-time federal relief funding, will complicate the ability to draw causal relationships between EBF and student outcomes in the coming years as well.
Research Question 3: To what extent were the EBF cost factors reflected in district expenditures from SY 2017-18 to SY 2018-19?
- District spending decisions are informed by student data and local needs assessments as well as evidence on the impact of EBF cost factors and suggested staffing ratios. Student academic outcome data, which often informed district needs assessments, informed decision-making pertaining to district spending. Another common tool in the decisionmaking process was the use of research and the ratios outlined in the EBF model as a foundation for decision-making. Ensuring that priorities were chosen based on the effect size of the investment, or how much of an impact a certain investment was expected to create, was a common theme amongst district administrators. ${ }^{2}$ Both school-based collaboration and discussion and decision-making by district leaders were notable methods for informing the decision-making process about resource allocation within districts.
- The most common Core Investment or staffing investment made by districts, as seen in the transcripts and on the digital survey, was the investment in instructional facilitators and core teachers. At the high school level, specialist teachers were added to increase elective and college readiness courses. At the elementary level, there appeared to be a concerted effort to increase the number of intervention teachers. Another common staffing investment was in the category of pupil support staff, more specifically social workers, as a way to support the "whole child". Each of these investments are cost factors specifically included in the EBF model, with significant research linking them to positive student outcomes.
- Districts largely used the funds in ways that aligned with the cost factors outlined in the EBF formula. In addition to the staffing factors mentioned in the previous finding, survey and interview data suggested districts spent significantly on categories that include professional development, instructional materials (including up-to-date materials and updating or improving quality of curricula), and computers and technology.
- Prioritization of the most urgent or impactful investments was critical, as districts remain far from full funding. During the first five years of EBF, districts within the sample often chose to first invest in the practices with the largest effect size. They reported that they did so in order to maximize the potential impact new funding might have on their students’ learning opportunities and outcomes. All districts in the sample are still below 70% of full funding (over half of all students in the state are currently in districts below 70% of full funding) and thus are unable to afford the entire suite of recommended cost factors; therefore, they must still make decisions about tradeoffs of investing in one area over another.

[^1]Research Question 4: Among schools that improved, which systemic and organizational change elements were used to improve student performance and close opportunity gaps?

- Changes in staffing, including adding staff (to fill open positions or create new positions), maintaining consistency in staffing, and lowering student-to-staff ratios were seen as a critical adjustment for improving student outcomes. Additional staff filled core instructional positions as well as support positions and were reported as having a positive impact overall as well as helping to support the needs of specific student groups, including English learner (EL) students and students with Individualized Education Programs (IEPs). Furthermore, these additional staff members increased opportunities for students in high school to take additional courses or added interventions at the elementary level.
- Engaging in and executing against strategic plans tied to long-term goals was another large-scale change enabled by additional funding and perceived to be associated with improvement. While executing against strategic plans, participants associated positive school change with shifts in management styles, employing data-informed decision-making, utilizing progress monitoring for continuous improvement, and working to improve school climate and culture. District leaders, principals, and educators shared the responsibility in much of this work; for example, they utilized data-informed decision making, which happened both at the district and school level.
- Improving instructional quality was a common focus among districts that saw improved student outcomes. Participants spoke about the importance of implementing high-quality curricula, prioritizing professional development, and increasing the use of technology for instruction. A concerted effort to invest in high-quality professional development and instructional materials was discussed by all levels of participants and was also in the top investment categories on the digital survey.
Research Question 5: How do changes in funding and circumstances influence the implementation of EBF from year to year? What was the overall effect of EBF on districts?
- When asked about the overall effects of EBF, many interview and focus group participants reported an overwhelmingly positive impact on their schools and districts so far but noted that they remain far from fully funded and emphasized need for continued investment. EBF allowed administrators to correct past systemic imbalances and recover from deep cuts to budgets that predated EBF. EBF provided newfound predictability and financial stability with respect to funding sources and left them better prepared to face the challenges of the COVID-19 pandemic. Participants noted that their districts are still far from adequacy and emphasized the importance of continued state investments in EBF in order to maintain and enable progress for their students.
- The primary challenges to progress that participants have experienced since EBF implementation include having to choose how to spend between competing priorities, as districts are still far below full adequacy, and difficulty hiring due to turnover among staff members and a lack of qualified candidates. This response raises an interesting intersection between adequate and equitable funding and addressing the state's educator shortage. Creating a strong educator pipeline will be critical to ensure that candidates are available to fill positions districts can increasingly afford to fill from a financial perspective as a result of EBF. Ideally, the improvements to school quality and ability to invest in staff created by EBF funding will also help districts attract and retain more diverse and highquality educators.
- Participants were also asked to opine on the effects of two contextual factors relevant to this five-year time period: the COVID-19 pandemic and the lack of tier funding disbursed in FY 2021.
- Regarding the pandemic, participants cited a need for increased investments in technology, mental health supports, and physical resources. Some interviewees stated that these investments had been initiated according to district need prior to the start of the pandemic, while others shared that the pandemic itself jump-started increased spending in these areas.
- The lack of tier funding in FY 2021 created challenges for some districts, forcing district administrators to forgo hiring or cut staff, stop certain programming or forgo planned investment in EBF cost factors, and choose less expensive technology options. Other administrators noted that receipt of Elementary and Secondary School Emergency Relief (ESSER) and Coronavirus Aid, Relief, and Economic Security (CARES) Act funding masked the issue and did not greatly impact their budget or spending decisions. Some administrators acknowledged that this was the case but cautioned that the federal funding is only a one-time supplement, meaning that EBF will be even more critical in the long term to ensure stability when that funding stream runs out by 2024.

Conclusion

Generally, this evaluative study has found that EBF is successfully targeting funding to the highest-needs districts per the formula and that it is equitably providing state funding to schools with greater proportions of low-income students and students of color and low levels of property wealth. However, geographic disparities in average Percent of Adequacy as well as large gaps to adequacy remain and are greater for students from low-income households than their wealthier peers; such gaps also are larger for students of color than for their White peers.

Additional years of quantitative data are required to adequately measure student academic and behavioral outcomes and to determine whether EBF is, in fact, improving the academic success of students across the state, but the qualitative components of this study helped illuminate the impact the four years of EBF funding received by districts in the five years since the formula's passage have had on school districts, especially those furthest from adequacy. For these districts, EBF has enabled research-based prioritization of high-impact supports and interventions for their students and allowed for improvements to instructional quality. It has provided the stability and predictability in funding needed for sustained progress. With 38.5% of districts and 53.5% of students still below 70% of adequacy, there is a long way to go. The findings of this initial evaluative study suggest that EBF is functioning in accordance with state goals, but its ability to continue doing so is contingent on sustained and significant investment from the state.

Introduction

The Evidence-Based Funding for Student Success Act, Public Act 100-0465, was signed into law in August 2017. The legislation was a significant and comprehensive shift from General State Aid, the previous method used to fund Illinois school districts. It provided a path toward equitable and adequate funding to all districts throughout Illinois to ensure that all students have access to a high-quality education that propels them to a higher level of college and career readiness upon graduating from Illinois public schools.

Purpose of Study and Research Questions

The Evidence-Based Funding for Student Success Act included the following language:
"Within 5 years after the implementation of this Section, and every 5 years thereafter, the Panel shall complete an evaluative study of the entire Evidence-Based Funding model, including an assessment of whether or not the formula is achieving State goals. The Panel shall report to the State Board, the General Assembly, and the Governor on the findings of the study." (105 ILCS 5/18-8.15(i))

In order to address this legislative charge, the Professional Review Panel (PRP) developed the research questions for this report in 2019. The PRP is a group of stakeholders tasked with recommending continual recalibration and other modifications to the EvidenceBased Funding (EBF) formula to meet the needs of all students in Illinois. The selection of the panel members is pursuant to the appointment specifications noted in 105 ILCS 18-8.15 (2017/2021). Members include district superintendents, representatives from school boards, school business officials, principals, teachers, school finance and evaluation experts, parents, representatives from collective impact organizations, and a research-based education policy organization. The PRP is composed of subcommittees, including the Reporting Committee
(formerly the Evaluative Study Committee), which is responsible for guiding the evaluation as directed by 105 ILCS 5/18-8.15(i).

Given the broad directive laid out in the legislation, the PRP determined that the evaluative study should examine whether the new EBF formula is leading to the desired outcomes in student achievement, adequacy, and equity five years after implementation. The proposal is guided by the following research questions (RQs) previously approved by the Reporting Committee in 2019 (ISBE, 2019) and recently updated due to ongoing data limitations resulting from the COVID-19 pandemic (ISBE, 2021).

1. To what extent did the Evidence-Based Funding formula distribute new state funds equitably to school districts each year?
2. Did growth in student achievement and other student outcome measures occur from the baseline 2017-18 school year through the 2020-21 school year in Illinois public schools?
3. To what extent were the EBF cost factors reflected in district expenditures from SY 2017-18 to SY 2018-19?
4. Among schools that improved, which systemic and organizational change elements were used to improve student performance and close opportunity gaps?
5. How do changes in funding and circumstances influence the implementation of EBF from year to year? What was the overall effect of EBF on districts?

The COVID-19 pandemic, which began in March 2020, greatly impacted education throughout the state, making it incredibly difficult to determine the specific effect of EBF. The PRP revised the original research questions to take into account this changing context. The study
attempts to look at five school years, three of which have been dramatically different than any others in recent history: The pandemic has impacted instructional modalities, interrupted statewide assessments, and resulted in flat funding for EBF in fiscal year 2021, among other disruptions. These contextual pieces cannot be ignored in this evaluation and in turn will play a prominent role in the analysis.

Given the demonstrated correlation between adequate funding and student outcomes (Borman \& Dowling, 2010; Darling-Hammond, 2019; Candelaria \& Shores, 2019), it is crucial to examine and understand how the EBF formula affects students across the state. This report will include a brief background on the history of school finance reform and Evidence-Based Funding both nationwide and in the state of Illinois and a summary of the relevant literature on school funding ideology, associations between school funding and student outcomes, and issues of equity and fidelity during funding implementation. This report will then detail the research questions; methods for data collection and analysis; and the findings of the five-year evaluation, including a quantitative and qualitative analysis.

Definitions ${ }^{3}$

Adequacy Bands - Adequacy bands were used in this analysis as a way to analyze Percent of Adequacy over the years. For the purpose of this study, the definition of adequacy bands will refer to the decile of adequacy percentages (i.e., $<60.00 \%, 60 \%$ $69.99 \%, 70.0 \%-79.99 \%$, etc.). A tier distinction cannot be directly tied to an adequacy band as tier distinctions vary each year.

Adequacy Target - An Adequacy Target is the sum of all education cost factors. The initial Adequacy Target includes Core Investments, Per Student Investments Subject to Comparable Wage Index (CWI), Per Student Investments Not Subject to CWI, and Additional Investments. Then, a Regionalization Factor is used to determine the Final Adequacy Target (Initial Adequacy multiplied by the Regionalization Factor or Comparable Wage Index).

[^2]Base Funding Minimum - The Base Funding Minimum (BFM) is the hold harmless provision of EBF that is cumulative -- it increases year over year to include EBF tier funding distributed the prior year. EBF consolidated and replaced five grants that districts received in FY 2017 into BFM, which was first utilized in FY 2018.

EBF Tier - A four-tier system is used to categorize districts based on their final Percent of Adequacy. Funds available for each tier are based on the Funding Allocation Rate.

Essential Elements or Cost Factors - Essential elements are those elements, resources, and educational programs that have been identified through academic research as necessary to improve student success, improve academic performance, close achievement gaps, and provide for other per student costs related to the delivery and leadership of the organizational unit, as well as the maintenance and operations of the unit.

Percent of Adequacy - Each district's unique Percent of Adequacy determines a district's Tier assignment. The final Percent of Adequacy is identified by dividing the Final Resources (Final Local Capacity Target, Adjusted BFM, and Corporate Personal Property Replacement Taxes) by the Adequacy Target. A lower Percent of Adequacy means the district is further from meeting its Adequacy Target and needs greater state assistance, while a higher Percent of Adequacy means the district is closer to its Adequacy Target and therefore requires less state assistance.

Background

The national conversation regarding school finance and student achievement has shifted
in the last 50 years. The following section will explore these shifts both nationwide and in the state of Illinois and discuss how the COVID-19 pandemic is impacting school finance reform across the country.

School Finance and Student Achievement Nationwide

For decades, researchers have shown that increased school funding is associated with improved student outcomes. More specifically, increasing per pupil expenditures is related to improved student outcomes (Card \& Krueger, 1992), including proficiency rates in reading, math, science, and social sciences (Condrong \& Roscigno, 2003); increased scores on state assessments (Henry et al., 2010); and better postsecondary outcomes (Houston, 2018). In the last

10 years, more recent studies have shown that increasing per pupil spending through school finance reform can lead to better student academic outcomes, close achievement gaps, and improve teacher quality (Atchison et al., 2019; Baker, 2018; Baker et al., 2018; DarlingHammond, 2019; Rothstein et al., 2016).

The connection between increases in school funding and positive student outcomes may seem to be common sense; however, the current preponderance of research supporting this notion directly refuted a prior seminal study that determined no such correlation and controlled the conversation pertaining to public school funding for decades prior to the current research. The 1966 Equality of Educational Opportunity Report ${ }^{4}$ by James Coleman and his colleagues remained a seminal piece for decades after its publication. Coleman's findings detailed mixed results regarding the extent to which various factors impacted student achievement, arguing that parental education, income, and race were strongly associated with student achievement whereas school resources (e.g., per pupil expenditures and class size) were less significant (Coleman et al., 1966). Regressive school funding policies, like the GSA in Illinois, were not uncommon and were often rooted in this ideology.

In 2010, Borman and Dowling refuted Coleman's original findings, determining that school resources had a larger impact on student achievement than family background by applying a multilevel model and updated statistical methods to reanalyze the data used in Coleman's original report (Borman \& Dowling, 2010). This report supported the already shifting narrative around school finance by highlighting the substantial differences in how well differently funded schools serve different populations.

[^3]A half-century after the release of the Coleman Report, funding for public schools has generally increased (Snyder et al., 2016). But the opportunity gap remains (McFarland et al., 2017) despite studies showing that increased investments in low-income districts can increase student achievement (Darling-Hammond, 2019). A recent study found that states experienced a 12% average increase in per pupil expenditure and a $7-12 \%$ increase in graduation rates seven years after school finance reform (Candelaria \& Shores, 2019). A similar study looking at the long-term outcomes of school finance reform found that a 10% increase in per pupil spending each year for all 12 years of public school leads to increases in graduation rates, higher wages, and a reduction in the annual incidence of adult poverty with a more pronounced impact on lowincome families.

Additionally, Rothbart (2020) examined more than 10,000 school districts from 1996 to 2011 to estimate the effect of school finance reform efforts on the distribution of district funding by racial composition. His study found that state aid increased from 39.9% of a district's total budget in 1970 to 47.9% in 2011 and per pupil changes were larger for districts with a concentration of non-White students. For example, about 20\% of the districts that had a Black student population of at least 10% and implemented school finance reforms received increased state aid by at least $\$ 171$ per pupil when accounting for inflation. Districts with large concentrations of Latino and Native American populations saw similar per pupil increases. Despite this increase in per pupil funding by racial composition detailed by Rothbart (2020), a nationwide analysis of per pupil state and local revenues showed that predominantly White school districts receive a total of $\$ 23$ billion more than their non-White peers despite serving a similar number of children (EdBuild, 2019). When examining low-income districts specifically, there is a $\$ 1,500$ per student gap between low-income White districts (\$12,987 per student) and
low-income non-White districts $(\$ 11,500)$. There remains a large discrepancy nationwide between funding for different types of districts, but Illinois was one of 12 states in the country where low-income non-White districts received more funding than White districts with less poverty (EdBuild, 2019).

History of Evidence-Based Funding Formula in Illinois

Illinois ushered in a new era for school funding in August 2017 with the passage of the Evidence-Based Funding for Student Success Act, Public Act 100-0465, effectively revamping how Illinois allocates state funds to school districts. From 1999 to 2017, Illinois used Equalization Formula and Supplemental Low-Income Grants to allocate and distribute funds (i.e., General State Aid; 105 ILCS 5/18-8.05). At the time, this funding mechanism was seen as the most regressive school funding formula in the nation (The Education Trust, 2018), wherein higher-poverty districts, on average, received less per pupil in state and local funding than the lowest-poverty districts (The Education Trust, 2018). Prior to EBF, local property tax revenue was the primary funding source for districts because of the structure of GSA and a history of inadequate investments in the formula. These grants were replaced with the Evidence-Based Funding (EBF) formula, which combined five grant programs: General State Aid, Special Education-Personnel, Special Education-Funding for Children Requiring Special Education Services, Special Education-Summer School, and English Learner Education. The EBF formula is partially based on a model of school funding developed by Picus and Odden, who argued that evidence-based practices should be used to determine the adequate financial funding of schools. Their proposed Evidence-Based Funding model is based on a list of empirically derived cost factors required to adequately educate a child. These factors consider national and regional variations in teacher salary, optimal pupil-to-teacher ratios, different student group needs, and
the cost of activities. (See Odden, Goetz, \& Picus, 2008; Odden, Picus, \& Fermanich, 2003; Picus Odden \& Associates, n.d.)

The goal of the EBF formula is to improve equity and adequacy by considering the unique financial needs of districts. There are 34 cost factors included in Illinois' EBF formula to assess the resources needed to meet a minimum standard of education for all students (i.e., Adequacy Target) in that district. (See Appendix A for a full list of cost factors.) The state calculates the current level of state and local resources for each district. ${ }^{5}$ The formula then determines the amount of state aid required to fill the gaps in funding between each district's current resources and its Adequacy Target and groups districts into four tiers based on current adequacy level (i.e., Percent of Adequacy), with Tier 1 containing the districts furthest away from adequacy (ISBE, 2020a). It is important to note that because the formula is relative and the Percent of Adequacy range for Tier 1 districts is dependent on the overall distribution of Percent of Adequacies for all districts across the state, Tier 1 districts will exist until all districts are funded to at least 90%, which is the lower threshold for being categorized as a Tier 3 district.

The ISBE State Funding and Forecasting Department is charged with performing these calculations each year. Recalibration efforts are completed in partnership with the Professional Review Panel's Recalibration Committee. Funds are distributed to school districts through the four-tier system established by statute (105 ILCS 5/18-8.15). In addition to maintaining the previous fiscal year's funding level for each district (i.e., Base Funding Minimum), the EBF formula provides for additional funds (i.e., tier funding) to be distributed primarily to raise the adequacy level of school districts that are below 100%. Ninety-nine percent of the tier funding is

[^4]distributed between Tier 1 and Tier 2 districts combined; Tier 1 districts receive 50% of new funding and the other 49% is distributed between Tier 1 and Tier 2 districts. The remaining 1% of funds is provided to Tier 3 (0.9%) and Tier $4(0.1 \%)$ districts. The Percent of Adequacy cutoff for identifying Tier 1 districts is recalculated annually based on the funding available for distribution and the updated Percent of Adequacy for each district. For example, the FY 2020 target ratio for Tier 1 districts was any district with an adequacy level less than $67.4 \%{ }^{6}$

The state began distributing funds per the EBF formula in April of 2018. Each subsequent year, with the exception of FY 2021 when no new tier funding was appropriated due to the ongoing pandemic, the state has distributed tier funding to school districts based on yearly appropriations; the total EBF funds distributed were $\$ 366,610,000$ in FY 2018, $\$ 300,022,360$ in FY 2019, $\$ 312,491,585$ in FY 2020, and $\$ 300,000,000$ in FY 2022. Illinois will need to invest an additional estimated $\$ 4.6$ billion -- that equates to about $\$ 911$ million per year for the next six years -- in order to fulfill statutory obligations to bring every district to 90% adequacy by 2027 (ISBE, 2020b). Therefore, understanding how EBF funding influences districts and student outcomes is increasingly critical as the state continues to work to improve educational outcomes for its students and respond to the adverse effects of the COVID-19 pandemic.

COVID-19 Pandemic and School Finance Reform

An increasing number of states are striving to fund education in a more equitable manner, but barriers to the implementation of those policies continue to exist. The COVID-19 pandemic has affected states' abilities to implement school finance reform as planned and added additional costs to already strained budgets (Center on Budget and Policy Priorities, 2020; DiNapoli, 2020).

[^5]Due to economic disruptions, state budget shortfalls of approximately 25% were estimated in FY 2021 across the nation (Center on Budget and Policy Priorities, 2020). Estimates of the decline in General Fund tax revenues in Illinois ranged from $\$ 2.7$ billion in 2020 to $\$ 4.6$ billion in 2021. Other states, such as Georgia, have experienced similar declines. Georgia saw a 10% decrease in revenues for 2021 and a nearly $\$ 1$ billion state funding cut (about 10%) for $\mathrm{K}-12$ public schools (Center on Budget and Policy Priorities, 2020). Experts warned that districts that rely on state funding to finance public education may be disproportionately impacted by the decrease in state revenues (Roza, 2020).

The federal government responded by enacting three rounds of pandemic relief funding legislation, which provided Illinois with a total of $\$ 7.8$ billion in one-time funds to address the impact of the pandemic on student learning and social-emotional well-being. However, federal statute requires the final round of funding to be expended by September 30, 2024. School districts cannot rely on the one-time federal funding to sustain recurring costs like long-term programs or staffing.

Literature Review

This report aims to deepen the understanding of school funding, including guiding tenets and considerations for implementation, in the evaluation of the efficacy of Evidence-Based Funding. The following literature review will briefly discuss the key principles of school funding ideologies and the relationship between school funding and student outcomes. The literature review will also detail issues with equity and fidelity during funding implementation, especially during times of financial hardship.

School Funding Ideologies

Given the strong correlation between school funding and student achievement, much of the more recent research has focused on identifying which cost factors contribute to improved student outcomes and how to appropriately fund them. School funding, measured by total per pupil expenditures, relates to the ability of schools to improve educational equality through inputs like student/staff ratios, educator pay, and educator retention (Card \& Krueger, 1992). Despite a preponderance of evidence showing otherwise, some lingering policies and research remain rooted in the arguments made by Hanushek between 1989 and 2005. Hanushek argued that efforts to increase educational resources are misguided because school funding is irrelevant to student achievement (Hanushek, 1989, 1992, 2003). Unlike much of the more recent research, Hanushek's studies focused more on the effects of teaching quality and less on educational inputs like class size (Rivkin et al., 2005). However, critics argued that Hanushek's studies compared districts' and states' spending without identifying other causal factors, such as adequacy-based funding, to meet students' needs (Rothstein et al., 2016).

More importantly, conversations pertaining to school funding have more recently focused on creating better student academic outcomes, closing achievement gaps, and improving teacher quality by achieving equity and adequacy in per pupil spending through school finance reform (Atchison et al., 2019; Baker, 2018; Baker et al., 2018; Darling-Hammond, 2019; Rothstein et al., 2016). Rothstein and colleagues (2016) further described school finance reform in two stages: equity, in which funding gaps between different populations and demographics are minimized, and adequacy, which is focused on ensuring an adequate level of funding in lowincome school districts regardless of whether that was more than the funding levels in highincome districts. Rothstein et al. (2016) found that school finance reform and funding became
more progressive due to increased state funding across the board, rather than, as some feared, the redistribution of money from rich to poor districts. Martin et al. (2018) included a third stage, which focuses on quality by ensuring that every student has access to a high-quality education and appropriate supports. This third stage also recommends implementing outcomes-based accountability measures that seek to ensure improved student achievement through quality-based school finance reform (Martin et al., 2018). The next section will provide additional literature on the impacts of increased investment on student achievement over time.

School Funding and Student Outcomes

Research has consistently shown that providing equity and adequacy in per pupil spending was positively associated with student achievement (Baker, 2018; Baker et al., 2018; Rothstein et al., 2016) ${ }^{7}$ and that increasing per pupil spending has helped in closing the opportunity gap (Atchison et al., 2019; Baker et al., 2018; Darling-Hammond, 2019; Rothstein et al., 2016). Additionally, the impact on student achievement has long-term implications beyond high school graduation. Biasi (2019) examined school finance reform across seven cohorts of students in 20 U.S. states. They found that smaller variances in per pupil expenditures can lead to a reduction in income inequality and an increase in intergenerational mobility, though impacts are often moderate. The increase in mobility occurred through increasing educational inputs (e.g., more teachers) and intermediate outcomes (e.g., college enrollment; Biasi 2019). ${ }^{8}$ Biasi also found that the results (e.g., reductions in income inequality and increases in

[^6]intergenerational mobility) were more significant when the school finance reform occurred earlier in a child's educational career. Increases in per pupil spending during a child's educational career leads to increases in graduation rates, higher wages over their lifetime, and lower rates of adult poverty (Jackson et al., 2015). Additionally, researchers found that exogenous spending increases were associated with improvements in school inputs, specifically increases in teacher salaries, lengthening the school year, and reductions in student-to-teacher ratios.

Examining school finance reform in Illinois, Houston (2018) found that per pupil funding was a significant explanatory and predictive factor in educational outcomes for high school students. Per pupil funding was significantly and positively related to all postsecondary-related outcomes (e.g., postsecondary enrollment) even when accounting for student- and school-level predictor variables (Houston, 2018). Houston argued that given the strong predictive nature of increased revenues, fully funding the current EBF formula was essential to improving postsecondary outcomes for students. Given the importance of ensuring college and career readiness, it is becoming increasingly important to understand the role that additional funds play in ensuring economic mobility, especially if the state faces budget crises that may affect funding distributions.

Implementing Funding Legislation with Fidelity

In conjunction with numerous school finance reform efforts, states must prioritize the implementation of funding legislation with fidelity. Darling-Hammond (2019) documented the circumstances in four states (Connecticut, Massachusetts, New Jersey, and North Carolina) where reforms that were implemented resulted in improved academic achievement and graduation rates, yet these improvements were not fully realized because of inadequate funding
distributions. Moreover, Atchison (2017) asserted that states should not reduce funding during a financial crisis. Simulations based on detailed data from New York state during the Great Recession showed that if the school finance legislation had been fully funded, districts in New York would have seen a dramatic increase in vertical and horizontal equity. ${ }^{9}$ Atchison (2017) further argued that when financial barriers arise, states should continue to invest in foundational aid rather than other specialized or grant state aid programs. It is critical to continuously evaluate the fidelity with which the EBF formula is being implemented and how this influences student achievement across the state, given that the stress on the state budget prompted by the COVID19 pandemic led to no new tier funding being distributed in FY 2021.

Leading and Lagging Indicators of Student Achievement

Improvements in behavioral and academic outcomes used to evaluate the effectiveness of policy changes, such as increased school funding, cannot be instantaneously determined. Various metrics can be used to evaluate the effectiveness of a policy or program; some of these outputs, called leading indicators, occur within a few years of implementation, while others, called lagging indicators, take longer to materialize.. Leading indicators can also be characterized as short-term outcomes, whereas lagging indicators comprise of the long-term outcomes that measure success in achieving a program's desired outcomes (Mass Insight Education, 2010). When reviewing metrics in order to evaluate EBF, measures such as student enrollment, attendance, and behavioral data should be viewed as leading indicators, providing early signs of progress that are prerequisite to the desired outcome of improved student achievement. On the other hand, student performance and graduation rate are both considered

[^7]lagging indicators, which are expected to yield improvements in the long term (Mass Insight Education, 2010).

Gaining a deeper understanding of the leading and lagging indicators of school improvement is an important step in fully understanding the impacts of EBF on students in Illinois. There is no research-based consensus as to how long after policy implementation one might expect to see changes in leading and lagging indicators, but there are a number of studies that can offer helpful insights. Kreisman and Steinberg (2019) showed that an extra $\$ 1,000$ in per pupil spending in Texas raised test scores, decreased high school dropout rates, and increased college enrollment and eventual graduation. These gains were particularly large for districts with greater proportions of students from low-income families and Hispanic students. More importantly, the Texas study showed the impacts of decades of increased investment highlighting the need to continue investing to see the true benefits of the legislation. Although not at the statelevel, Baron (2019) found that districts in Wisconsin that increased funding by as little as $\$ 600$ per student, with almost 80% of those additional funds being used for instructional expenditures, led to higher test scores and college enrollment and lower dropout rates. Baron found that some indicators changed relatively quickly (e.g., test scores and dropout rates) while other indicators took almost 10 years to actualize (e.g., college enrollment).

Rauscher (2019) examined school districts in California that passed bond measures to raise money for schools and found that after just six years, districts that were predominantly lowincome showed modest increases in test scores. Alternatively, there was no clear effect for higher-income districts. Similarly, Abbott et al. (2019), using analysis of over 800 districts across seven states, found that when states raised taxes for schools, the revenue boost increased test scores for high-poverty districts and that the effect was strongest several years after the
spending increase. As with the Rauscher study, there was no clear increase in low-poverty districts, but that could be explained by the progressive nature of the increases. Abbott et al. (2019) also found that the increases in test scores were highest five to seven years after implementation of the tax increase. These studies highlight that with continued investment, and with some return to normalcy for schools after the pandemic, leading indicators such as academic behavior indicators should start to increase, followed by increases in test scores. EBF will have to remain constant for much longer before long-term outcomes, such as increased college enrollment and graduation, are evident. Furthermore, it is widely understood that the COVID-19 pandemic has greatly disrupted schooling and impacted both leading and lagging indicator metrics. It is reasonable to assume that lagging indicators will now be even further delayed due to the disruption of student learning caused by the pandemic.

Evidence-Based Funding Formula Implementation

The EBF formula as set out in the Evidence-Based Funding for Student Success Act or Public Act 100-0465 (2017) was created to address inequity in school funding in Illinois. As noted previously, the purpose of this study is to evaluate the implementation of EBF since 2017. For that reason, it is critical to understand the formula and the status of implementation thus far.

Illinois' Evidence-Based Funding Formula Explained

EBF includes a hold harmless provision called the Based Funding Minimum (BFM), ensuring that every school district receives the same amount of funding from the state that it received the prior year. Upon implementation, EBF consolidated and replaced the five aforementioned grants districts received in FY 2017 into the BFM utilized in FY 2018. The BFM is recalculated each fiscal year to include additional state assistance for each district (tier
funding). ${ }^{10}$ The formula includes four major components of the funding model per legislation. ${ }^{11}$ The first stage of the formula includes the calculation of a unique Adequacy Target for each Organization Unit in the state that considers a few factors: the costs to implement research-based practices, the demographics of the district, and the regional wage differences. The next step of the model is to calculate the Local Capacity Target of each organizational unit, or the amount each district could reasonably be expected to contribute toward its Adequacy Target from local resources. Third, the model calculates how much funding the state currently contributes to the organizational unit and adds that to the unit's Local Capacity Target to determine the unit's overall current adequacy of funding. The formula compares each district's current adequacy of funding to the Adequacy Target and produces a Percent of Adequacy for each district. These Percents of Adequacy will be used extensively in this evaluation.

Embedded in the EBF formula are the essential elements or cost factors that are included in the calculation of districts' Adequacy Targets. ${ }^{12}$ The formula takes into account three types of investments. Core Investments can be defined as the cost of staffing core positions, such as core teachers, instructional facilitations, intervention teachers, guidance counselors, nurses, and principals, which makes up the first component of the Adequacy Target (ISBE, 2017).

[^8]

The second component used to determine a district's Adequacy Target is its per student investments, including gifted instruction, professional development, instructional material, assessments, computer and technological equipment, student activities, operations and maintenance, central office staff, and employee benefits (ISBE, 2017).

Additional investments include the cost of staffing positions for special education, lowincome students, and English learners and make up the final component in the Adequacy Target calculations (ISBE, 2017). The cost factors in this category also include pupil support, which covers social workers, school psychologists, and intervention teachers. Given the increased investments based on these student groups, many of the subsequent analyses in this study will be disaggregated by these groups.

- Special Education Core Teacher (141:1)
- Instructional Assistant (141:1)
- Psychologist (1000:1)

Together, these three categories consisting of 34 cost factors dictate the amount of money needed to educate all students in any given district. These cost factors are incorporated into the formula itself and are based on research regarding which educational inputs have been shown to have a positive impact on student outcomes. ${ }^{13}$

Districts are placed into four "tiers" based on their Percent of Adequacy, or how wellfunded they are. Districts furthest from full, adequate funding are placed in Tier 1, which is dynamic and based on new funding allocated each year. ${ }^{14}$ Lastly, new state funding disbursements are calculated based on the adequacy level, with the formula prioritizing those units in Tiers 1 and 2, meaning 99\% of new funding going to schools in these tiers. (See Table

1.)

[^9]
Table 1

EBF tier assignments and funding allocation rates

Tier	FY 2022 Target Ratio	\% of New Funding	Funding Allocation Rate Notes
Tier 1	<68.5	50%	Furthest away from adequacy, greatest amount of state assistance
Tier 2	$\geq 68.5 \%$ and $<90 \%$	49%	Funds distributed to both Tier 1 and Tier 2 units
Tier 3	$\geq 90 \%$ and $<100 \%$	0.9%	Greater than adequacy, least amount of state assistance
Tier 4	$\geq 100 \%$	0.1%	

This tier distinction dictates the amount of new funding that districts receive. Half of all new state funding (50%) in a given year is distributed through Tier 1 mechanics; 49% is distributed through Tier 2 mechanics, with those funds distributed to both Tier 1 and Tier 2 units; 0.9% is distributed to Tier 3 units; and 0.1% is distributed to Tier 4 units. Another key component of the formula is the creation of the Minimum Funding Level, which requires the state to appropriate at least $\$ 350$ million each year in new state funds for EBF, with $\$ 300$ million for disbursement through the tiers and $\$ 50$ million set aside for Property Tax Relief Grants.

A very simplistic example follows: If a district's resources are calculated at $\$ 5$ million and the EBF formula calculates its Adequacy Target to be $\$ 7$ million, then this district's adequacy level is 71.4% ($\$ 5$ million divided by $\$ 7$ million). The district is then given a tier designation relative to every other district and this tier is recalculated annually; for FY 2022, this district would be identified as a Tier 2 district and receive funding accordingly. The same Percent of Adequacy may result in a different tier designation in subsequent years based on the
appropriations available for tier funding, the impacts of adjustments in cost factors on districts' Adequacy Targets, and the impact of the previous year of funding on districts' current resources.

EBF Coding Error and Corrective Payments

A contractor for ISBE made a coding error in the spring of 2018 during the initial development of the enrollment verification system for EBF that affected the distribution of approximately $\$ 90$ million from FY 2019 through FY 2022. ISBE issued corrected tier assignments to some organizational units in April 2022 and issued corrective payments to 762 organizational units in May 2022. These funding changes and corrected tier assignments will not impact districts until after data collection for this study has been completed. ${ }^{15}$ Therefore, given the timeline and purpose of this report to examine EBF as it was implemented since 2017, this report uses the initial FY 2019-22 distributions and tier assignments for its analysis rather than the corrected distributions and tier assignments.

Evidence-Based Funding Formula Since Passage

The following section will provide a brief introduction to some of the descriptive statistics regarding funding and adequacy levels since FY 2018. Figure 1 displays the total funds distributed from FY 2018 to FY 2022 and demonstrates a general annual increase in total funding received by school districts since the passage of EBF. Tier funding made up 5.8% of the total funding in FY 2018 and decreased to 4.5% in FY 2019, 4.4\% in FY 2020, and 4.0% in FY 2022. No tier funding was disbursed in 2021. Tier funding decreased from $\$ 367$ million in FY 2018 to $\$ 294$ million in FY 2022, but total EBF funding increased from approximately $\$ 6.3$ billion in FY 2018 to $\$ 7.4$ billion in FY 2022. The dotted line shows the increase in Base

[^10]Funding Minimum over total EBF funding from the previous year, demonstrating that the vast majority of annual BFM growth is a result of annual tier funding.

Figure 1
Base Funding Minimum and tier funding for school districts by fiscal year, FY 2018-22

Figure 2 illustrates the drastic decrease in the number of school districts below 60% adequacy; the number of school districts below 60% adequacy decreased more than tenfold between FY 2018 (168 school districts) and FY 2022 (16 school districts). The overall decreasing trend is evidence that EBF tier funding is effectively increasing school districts' adequacy as fewer districts remain below the 60\% adequacy benchmark in FY 2022 than when EBF tier funding was first distributed in FY 2018. Further analysis is needed to determine why the number of school districts below 60% adequacy increased in FY 2022 after three consecutive years of decline.

Figure 2
Number of school districts with less than 60\% adequacy, FY 2018-22

Figure 3 displays the number of school districts in each adequacy band for FY 2018-22. Since EBF was implemented in FY 2018, a net total of 152 school districts that previously fell into the lowest adequacy band (<60\%) have moved into higher adequacy bands. It is likely that these school districts account for much of the movement into the next higher adequacy bands, 60-60.99\% and 70-79.99\%, which saw increases of 51 and 50 school districts, respectively. The three highest adequacy bands $-80-89.99 \%, 90-99.999 \%$, and $\geq 100 \%$ - saw consistent increases in the number of school districts improving into each band; 17 or 18 districts each. Together, these findings indicate that EBF has effectively facilitated school district movement into higher adequacy bands. The most significant exodus of school districts from the lowest adequacy band demonstrates that EBF has also effectively targeted the school districts with the greatest financial need.

Figure 3
Number of school districts per adequacy band, FY 2018-22

The total student enrollment among adequacy bands is compared in Figure 4. The figure also shows the total number and the proportion of students in each adequacy band for FY 201822. While the top three adequacy bands have remained relatively steady in the number and proportion of students enrolled, increases in the $60-69.99 \%$ and $70-79.99 \%$ adequacy bands coupled with a decrease in the number and percentage of students enrolled in school districts achieving less than 60% adequacy indicate that EBF has targeted funds to students attending school districts with the highest needs. This has resulted in more students attending school districts with a higher Percent of Adequacy than they did prior to the implementation of EBF. It is important to note that as more districts move toward adequacy, the Tier 1 cutoff will also increase; in other words, the floor will continue to raise and thus the bulk of the funding will follow the students.

Figure 4
Student enrollment by adequacy band, FY 2018-22

Figures 5a-c demonstrates the mobility of school districts from FY 2018 to FY 2022 across the state by the Percent of Adequacy change. The figures below are separated by Elementary, High, and Unit districts as there can be multiple districts in a specific covering the same geographic area. As seen in the figures and Table 2, the majority of districts fell in the 0.01 to 10.00% adequacy change (41.96% of Elementary districts, 39.58% of High, and 56.53% of Unit districts). Notably, 200 districts increased their Percent of Adequacy by 10.00% or more between FY 2018 and FY 2022. There were 244 districts that saw a decrease in their Percent of Adequacy between FY 2018 and FY 2022. Both the increases and decreases were seen throughout the state and with little concentration in certain regions of the state.

Figures 5a-c
District mobility between EBF tiers from FY 2018-22

Illinois
State Board of
Education

EBF Percent Adequacy Change 2018 to 2022 High School Districts

Illinois
State Board of
Education

EBF Percent Adequacy Change 2018 to 2022 Unit School Districts

Table 2
Number of districts by Percent of Adequacy change

District Type	Percent of Adequacy Change	Number of Districts
Elementary	-27.74 to -4.01	79
	-4.00 to 0.00	56
	0.01 to 10.00	154
	10.01 to 20.00	56
High	20.01 to 77.82	22
	-25.67 to -4.01	18
	-4.00 to 0.00	12
Unit	0.01 to 10.00	38
	10.01 to 20.00	25
	20.01 to 33.50	3
	-14.70 to -4.01	24
	-4.00 to 0.00	55
	0.01 to 10.00	225
	10.01 to 20.00	79

Quantitative Methodology

Quantitative Research Questions

The quantitative analysis will include both an examination of the implementation of EBF and an investigation into a variety of student achievement measures since the implementation of EBF in FY 2018. The following research questions will be addressed.

Research Question 1

To what extent did the Evidence-Based Funding formula distribute new state funds equitably to school districts each year?

- To what extent did EBF distribute new state funds to districts with the highest levels of need, as defined by those districts that are the furthest from full funding or "adequacy"?
- To what extent did EBF distribute new state funds to districts serving the greatest number of students from low-income households and districts with the least property wealth/local resources?
- To what extent did EBF distribute new state funds in a manner consistent with the goal of improving racial equity in the availability of school resources?

Research Question 2

Did growth in student achievement and other student outcome measures occur from the baseline 2017-18 school year through the 2020-21 school year in Illinois public schools? ${ }^{16}$

[^11]
Sample and Data

Sample

The Evidence-Based Funding for Student Success Act was signed into law on August 31, 2017. In the first year of EBF implementation, dollars were not distributed until between April and June of 2018. EBF tier dollars were distributed on the normal schedule in FY 2019, FY 2020, and FY 2022. ${ }^{17}$ BFM was still distributed in FY 2021. Regional Offices of Education (ROEs), Safe Schools, and Alternative Schools did not begin receiving additional EBF tier funding until FY 2020. For this reason, this study will exclusively focus on the impacts of EBF on public school districts in Illinois. See Appendix B for more information on EBF that includes all organizational units (including ROEs, Safe Schools, and Alternative Schools).

Data

Data used in this evaluation were drawn from two primary sources: the SY 2018-2021 Illinois Report Cards and FY 2018-2022 EBF Quick Facts. ${ }^{18}$ This study's goal is a five-year evaluation of EBF per the statute, but only four years of Report Card data were available at the time of writing this report (SY 2018-21). Financial data for FY 2018-22 were available and used in this analysis. Analysis is conducted for both tier and adequacy bands, when appropriate.

Student Achievement Indicators: Student achievement indicators include assessment results in English language arts (ELA) and math and high school graduation rates. The state assessments include the Illinois Assessment of Readiness (IAR) for students in Grades 3 through 8, SAT for students in Grade 11, and the Dynamic Learning Maps Alternate Assessment (DLMAA), which assesses students with the most severe cognitive disabilities, up to 1% of all

[^12]students. Assessment results include proficiency rates for ELA and math, which signify the percentage of students who meet Illinois state standards. ${ }^{19}$ Both the four-year adjusted cohort graduation rate and five-year graduation rate are used to analyze high school graduation rates.

Academic Behavior Indicators: Academic behavior may affect student learning and academic achievement. ${ }^{20}$ The following academic behavior indicators were analyzed for this study:

- Student attendance rates
- Chronic absenteeism rates
- Chronic truancy rates
- High school dropout rates
- Rate of ninth-graders on track to graduate
- Percentage of high school students taking advanced courses
- In-school suspension rates
- Out-of-school suspension rates

[^13]
Data Limitations

EBF Passed August 2017		FY 19-EBF Funds Distributed		COVID-19 Pandemic, School Disruptions - No Assessments March 2020		Ongoing Pandemic Delayed Assessments SY 2020-21
O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	FY 18-Intitial EBF Funds Distributed		FY 20-EBF Funds Distributed		Ongoing Pandemic - No Additional	
	April - June 2018				Tier Funding FY 2021	

The timeline displayed above gives a brief overview of the events since the passage of
EBF in 2017 that have impacted the data used in this evaluation. A further description of these data limitations can be found below.

Financial Data: Significant data limitations shaped the analyses for this evaluation. The first EBF funds were not distributed until the spring of 2018; thus, it is inadvisable to use that year as a valid data point to determine student growth due to the delay in funding disbursement. Rather, it should be used as a baseline year by which to analyze subsequent years, during which new funding distributed through EBF was actually spent by districts. In addition, the uncertainty caused by the pandemic resulted in the lack of increased funding for EBF in FY 2021, making it impossible to determine EBF tier assignments for FY 2021. Consequently, there are only two years of data, SY 2017-18 and SY 2018-19, for which both expenditure reports and valid assessment data are available.

These significant data shortcomings also limit the analysis for RQ3. RQ3 focuses on the 34 cost factors, analyzing how well they represented actual expenditures of districts and how they chose to prioritize certain cost factors. Access to data that corresponds to all 34 cost factors is necessary to complete this analysis,; however, ISBE only collects data on 12 of the 34 cost
factors. For this reason, a digital survey was distributed to select districts to collect data on all 34 cost factors as outlined in the Data Collection Tools - Survey section on page 90.

Student Academic Achievement Measures: Only minimal trend analyses could be completed due to issues posed by the ongoing COVID-19 pandemic. The pandemic severely disrupted education as we know it and resulted in major disruptions to the normal data collection in districts and schools throughout the state. There are no reported assessments for SY 2019-20 because of the pandemic, and assessments were delayed for SY 2020-21. Thus, there are not enough valid data sets to complete any meaningful or accurate causation analysis. Additionally, many of the achievement measures are lagging indicators; even absent the pandemic, it would likely have taken three to five more years of consistent additional EBF increases to see the impacts of these increases on districts' proficiency rates, graduation rates, and other student outcome measures. ${ }^{21}$ Schools' efforts are being bolstered by significant one-time federal funding as they try to recover from the impacts of the pandemic in the short term and for the foreseeable future,. It is reasonable to assume that our ability to observe the intended effects of EBF on student outcomes may be even further delayed. That is not to say that EBF did not have the desired effects on student achievement but that it will be harder to observe given the impacts of the COVID-19 pandemic on student learning. (See Leading and Lagging Indicators of Student Achievement on leading and 24.)

Student Academic Behavior Indicators: The pandemic caused issues pertaining to the collection of assessment and financial data, so there are significant data limitations affecting

[^14]student academic behavior indicators. A note regarding the use of SY 2019-20 data from ISBE's Illinois Report Card team states:
"Users of this report should note that this data may have been affected by the suspension of in-person instruction during the 2019-20 school year. While it was collected in accordance with ISBE data policy and validated through normal procedures, the state environment and policy changes resulting from the suspension of in-person instruction may have possibly affected the result. Thus, please use caution when interpreting results and trends." (ISBE, 2020c, p. 2)

All 2020 Illinois Report Card metrics used in this evaluation affected by this limitation are detailed in their respective methodology sections.

Analyses

A variety of analyses were conducted to evaluate the extent to which the EBF formula distributed new state funds equitably to school districts each year. Several funding factors were compared among the EBF tiers and across adequacy bands. The amount of additional tier funding was calculated for the study years as well as the number of districts significantly below adequacy. Next, an analysis of the geographical distribution of school districts across the four tiers was completed to examine if and how average Percent of Adequacy is changing in all regions of the state. Additionally, a variety of descriptive statistics were calculated to understand the distribution of funds across tiers and adequacy bands. Lastly, instructional and noninstructional expenditures per pupil were analyzed by tier to determine the progress in providing additional instructional resources for students.

The next analyses focused on whether growth in student achievement and other student outcome measures occurred from the baseline SY 2017-18 through SY 2020-21, wherein all
academic achievement and academic behavior indicators were analyzed across tiers and adequacy bands. High school graduation rate, attendance rate, chronic absenteeism, rate, chronic truancy rate, and high school dropout rate were recalculated at the tier level, and the differences among the tiers within a given year were evaluated to further examine the connection between the EBF formula and student outcomes. All the academic achievement and behavior indicators were also disaggregated by race/ethnicity and targeted student groups (ELs, students with IEPs, and low-income students) to monitor the progress toward the closing of the opportunity gap.

Quantitative Findings

RQ 1 Findings

The following section will summarize the findings of the first research question (RQ1) regarding the extent to which the Evidence-Based Funding formula distributed new state funds equitably to school district each year. Additional analysis focused on the distribution of funds to districts with the highest levels of needs that serve the greatest number of students from lowincome households and districts with the least property wealth/local resources, as well as whether EBF distributed funds in a manner consistent with its goal of improving racial equity via the availability of school resources.

The movement of districts between EBF tiers across the various regions in Illinois was analyzed to examine equity from a geographic standpoint. Figures 6a-d display the geographical distribution of school districts in each of the four tiers. While school district density in each region impacts the absolute number of districts in each tier, net change from SY 2018 to SY 2022 shows movement that is indicative of EBF tier funding effectively improving adequacy for
school districts across the state. ${ }^{22}$ For example as seen in Figure 6a, the number of Tier 1 school districts decreased for all regions between FY 2018 and FY 2022, with the Southeast region decreasing by the greatest percentage (20.4\%). However, the Southeast region also consistently saw the greatest proportion of Tier 1 school districts for any region in the state, though that proportion has decreased from 75.6% in FY 2018 to 60.2% in FY 2022. At most, only six of the Southeast region's 123 school districts have been classified as Tier 3 or Tier 4 since FY 2018. Each year since FY 2018, at least 95\% of school districts in the Southeast region have been classified as Tier 1 to Tier 2. Conversely, the number of Tier 4 school districts increased for all regions except the Northeast, which only saw two of its 105 school districts drop to Tier 3 between FY 2018 and FY 2022; the Northeast region consistently has the greatest proportion of Tier 4 school districts of any region in the state, with $31-35 \%$ of its school districts operating above 100\% adequacy each year since FY 2018.

Taken as a whole, these results suggest that EBF tier funding is impacting the movement of schools both out of Tier 1 and into Tier 4 for all regions in Illinois, but that there is lingering inequity between the regions as evidenced by consistently high adequacy in the Northeast region and consistently low adequacy in the Southeast region; the Southeast region is joined by the Southwest, East Central, West Central, and Northwest regions with relatively low numbers of school districts achieving Tier 3 and Tier 4 adequacy. It is important to note that increasing funding for districts with fewer resources is a primary function of the formula; as each year passes with additional tier funding, more districts will continue moving toward adequate funding. So although there has been a decline in Tier 1 districts over the first five years of

[^15]implementation, a better evaluation of the efficacy of the formula is to evaluate whether more districts are moving toward adequacy and if the formula is actually lifting the bottom threshold and average Percent of Adequacy of the Tier 1 districts. Tier 1 districts will exist until all districts are funded to at least 90% of adequacy (the lower limit for categorization as a Tier 3 district) because the formula is relative, and the Percent of Adequacy range for Tier 1 districts is dependent on the overall distribution of Percent of Adequacies for all districts across the state. This can be seen in both Figure 3 in which the number of districts with less than 60% adequacy is decreasing while the number of districts in the $70.00-79.99 \%$ and $80.00-89.99 \%$ adequacy bands is increasing. Additionally, Figure 8 below shows the natural progression of the formula in increasing the adequacy levels of Tier 1 districts as a whole. The average Percent of Adequacy of Tier 1 districts increased by 5.4\% from FY 2018 to FY 2022.

Figures 6a-d
Geographical distribution of school districts in each of the four EBF tiers, FY 2018-22 (district mobility)

Tier 1

Figure 7 depicts the overall disbursal of EBF tier funding since FY 2018. ${ }^{23}$ Per the funding formula, Tier 3 and Tier 4 school districts received a steady 0.9% and 0.1%, respectively, of the total tier funding paid out each year. Also per the formula, Tier 1 districts consistently received the greatest proportion, by far, of tier funding each year since FY 2018; the metrics confirm that new tier funding has been disbursed disproportionately to the highest-need districts as intended.

Figure 7
EBF funding distributions by tier for all school districts, FY 2018-22

[^16]Figure 8 shows the change in the average Percent of Adequacy for each tier for FY 2018$22 .{ }^{24}$ Generally, the average Percent of Adequacy for Tier 1, 2, and 3 school districts increased between FY 2018 and FY 2022 while the average Percent of Adequacy of Tier 4 school districts decreased by 0.46% in the same time frame. Tier 1 districts saw the greatest increase in average Percent of Adequacy between FY 2018 and FY 2022 (+9.1\%), indicating that the highest-need school districts are experiencing the greatest improvement. As the averages for Tiers 1, 2, and 3 move upward, it is reasonable to conclude that EBF is achieving its goal of improving school districts' adequacy levels across the state.

Figure 8
Average Percent of Adequacy by tier and percent change for school districts, FY 2018-22

[^17]Table 3 shows the range of Percent of Adequacy for each tier for FY 2018-22. ${ }^{25}$ The median Percent of Adequacy for Tiers 1, 2, and 3 rose each of the four fiscal years for which data are available (FY 2018, 2019, 2020, and 2022) whereas the median for Tier 4 districts remained unchanged. Most notably, the minimum Percent of Adequacy for Tier 1 districts saw an increase of 19.6% between FY 2018 and FY 2022 and the median increased by 8.7%. Table 3 further demonstrates that adequacy levels continue to improve for Tier 1 and Tier 2 school districts.

Table 3

Descriptive statistics (median, max, min) of Percent of Adequacy for school districts, FY 2018-22 Percent Change

		2018	2019	2020	2022	FY 18-22
Tier 1	Minimum	46.1%	47.2%	51.1%	55.1%	19.6%
	Median	59.8%	62.1%	64.1%	65.0%	8.7%
	Maximum	64.6%	65.5%	67.3%	68.5%	6.1%
Tier 2	Minimum	64.6%	65.6%	67.4%	68.5%	6.0%
	Median	73.0%	73.0%	73.7%	74.0%	1.4%
	Maximum	89.8%	90.0%	89.9%	89.9%	0.0%
Tier 3	Minimum	90.2%	90.2%	90.0%	90.0%	-0.1%
	Median	94.7%	95.2%	96.3%	96.1%	1.5%
	Maximum	99.9%	99.4%	100.0%	100.0%	0.0%
Tier 4	Minimum	100.0%	100.1%	100.2%	100.4%	0.3%
	Median	119.4%	118.6%	117.7%	119.4%	0.0%
	Maximum	288.2%	280.4%	269.4%	268.7%	-6.8%

Figure 9 shows the percentage of new tier funding that was allocated to each adequacy band as well as the percentage of students served by districts in each adequacy band. ${ }^{26}$ Chicago Public Schools (CPS) is separated into its own category because it has a significant impact on the metrics for the 60-69.99\% adequacy band given the size of the district and thus the amount of

[^18]tier money it receives. The data show that school districts with greater than 70% adequacy received no more than 10.5% of the total tier funding each year since FY 2018. In both FY 2018 and FY 2019, the greatest share of tier funding was distributed to school districts with less than 60\% adequacy.

In FY 2020 and FY 2022, the greatest proportion of funding shifted to school districts in the $60-60.99 \%$ band; the percentage of students served by districts in the $60-69.99 \%$ band also increased to make it the most populated adequacy band. This four-year shift coincided with a decrease in school districts with less than 60\% adequacy between FY 2018 and FY 2022 and illustrates the intended effect of the EBF formula in which funding follows high-need school districts. With the increases in state funding that occur each year under EBF, it is expected that the proportion of districts achieving greater than 60% adequacy will increase. Therefore, one would also expect to see a greater proportion of new tier funding being disbursed to those districts. Additionally, the percentage of total tier money disbursed to Chicago Public Schools increased from 18.1% of the total new tier funding in FY 2018 to 28.5% of the total new tier funding in FY 2022, corresponding with an increase in funding of over $\$ 17$ million for the school district. CPS has remained in the 60-69.99\% band since EBF was implemented.

Figure 9

Distribution of final tier funding (new) and student enrollment per Percent of Adequacy band by year for all school districts, FY 201822

Note: CPS Percent of Adequacy for the above years were the following: FY 2018 63.06\%, FY 2019 64.32\%, FY 2020 65.56\%, and FY 2022 65.64%. It was also identified as a Tier 1 district each year.

Figure 10a compares the instructional and non-instructional expenditures by tier for all school districts for FY 2018-20 and confirms the expected results of the EBF implementation: There is a general increase in expenditures as school district adequacy levels improve. Tier 2 saw the greatest percent increase in instructional and noninstructional expenditures per pupil between 2018 (8.7%) and 2020 (10.0%). As expected, given their adequacy levels, Tier 4 school districts have substantially higher expenditures per pupil than Tiers 1 and 2.

Figure 10b shows per pupil and total expenditures for all Tier 1 school districts as compared to Chicago Public Schools. As previously mentioned, CPS was disaggregated due to the district's size and thus the amount of funding it received. CPS clearly has comparatively large instructional and non-instructional expenditures per pupil, spending an average 43.5\% more per pupil than the average non-CPS Tier 1 school. However, the differences between CPS and other Tier 1 schools are not evenly allocated between instructional and non-instructional expenditures; CPS spends 67.3% more per pupil on instructional expenditures but only 12.6% more per pupil on non-instructional expenditures than the average Tier 1 school. CPS also saw a far smaller percent increase in instructional expenditures per pupil and a far greater percent increase in non-instructional expenditures per pupil compared to the average for non-CPS Tier 1 schools between 2018 and 2020. It is also important to note that tier funding made up only $3.82 \%-4.74 \%$ of the total state contribution for CPS between FY 2018 and FY 2022. Additionally, the scope of this analysis cannot draw a causal statement between tier funding and increased instructional expenditures.

Figure 10a
Average instructional and non-instructional expenditures by tier for all school districts, FY 2018-20

Note: Chicago Public Schools was included in this analysis.

Figure 10b
Tier 1 school districts average instructional and non-instructional expenditures with Chicago Public Schools disaggregated, FY 2018-20

In order to examine whether EBF distributed funds equitably to districts with high concentrations of low-income students and low property wealth, districts were assigned to one of five quintiles, each containing approximately one-fifth of the student population in Illinois. These did not include Chicago Public Schools, which makes up its own category outside of the quintiles. Quintile 1 contains districts with the lowest proportion of low-income students and highest property wealth metrics, while Quintile 5 contains districts with the highest proportion of low-income students and the lowest property wealth metrics. ${ }^{27}$

Figure 11 shows the total tier funding allocated to each low-income quintile and Chicago Public Schools. This figure demonstrates that the quintiles with greater proportions of lowincome students have received a greater proportion of the new tier funding since EBF was implemented in FY 2018, in line with the intention of the formula to send funds to the highest needs' students and districts.

[^19]Figure 11
Total tier funding allocated to each low-income quintile

Note: CPS is disaggregated from the quintiles because of the district's size and the amount of tier funding it receives. CPS' metrics regarding its low-income population would place it within Quintile 5.

Figure 12 shows the average amount of tier funding school districts in each low-income quintile received. In each fiscal year since 2018, Quintile 5 districts (those with the highest proportion of low-income students) on average received approximately double the amount of tier funding as Quintile 4, which contains districts with the next highest proportion of low-income students. Quintile 4 received approximately two or three times as much tier funding as Quintile 3, which received roughly the same amount of tier funding as Quintile 2. Quintile 1 districts on average consistently received the least amount of tier funding.

Figure 12
Average tier funding allocated to each low-income quintile
\$2,500,000

Figure 13 shows that each decile contains approximately one-fifth of the state's students, excluding students enrolled in Chicago Public Schools. This figure reinforces that EBF is working as intended to direct money to high-needs districts. For instance, districts in Quintile 5 enrolled between 15.3% and 16.4% of students in Illinois from FY 2018 to FY 2022 but have received anywhere from 27.4% (FY 2022) to 35.4% (FY 2019) of the total new tier funding disbursed to all districts. Conversely, school districts in Quintile 1 have consistently received no more than 3.7% of the total new tier funding since FY 2018.

Figure 13
Total tier funding and student enrollment per low-income quintile

Note: CPS is disaggregated from the quintiles because of the district's size and the amount of tier funding it receives. CPS' metrics regarding its low-income population would place it within Quintile 5.

A similar analysis was conducted according to property wealth values across the state.
School districts were categorized into five quintiles, each comprising approximately one-fifth of the student population of the state, excluding Chicago Public Schools, which was again separated into its own category due to both the size of its student population and the amount of EBF tier funding it receives. Quintile 1 contains districts that have the highest average property wealth,
while Quintile 5 contains districts that have the lowest average property wealth, as measured by a district's Adjusted Equalized Assessed Value (EAV). ${ }^{28}$ No new tier funding was disbursed in FY 2021, so that year is omitted from the following analyses regarding property wealth.

Figure 14 shows that the EBF formula is disbursing funds equitably with respect to property wealth, consistently sending the highest proportion of new tier funding to Quintile 5 districts, ranging from 37.4% of new tier funding in FY 2018 to 32.0% in FY 2020. Quintile 1 districts, which enroll approximately one-fifth of students outside of Chicago Public Schools, have received no more than 4.6% of new tier funding since EBF implementation.

[^20]Figure 14
Total tier funding allocated to each property wealth quintile ${ }^{29}$

Figure 15 shows a similar trend when reviewing the average amount of new tier funding received by a school district in each quintile. Districts in Quintile 5 receive approximately three to six times more new tier funding per year, on average, than districts in Quintile 1, demonstrating that EBF money is primarily going to districts with lower average property wealth.

[^21]Figure 15
Average tier funding allocated to each property wealth quintile

Figure 16 shows the intended disproportionate nature of EBF tier funding as it relates to student enrollment; if the formula is working according to intentions, it should show more money flowing to students who live in districts with lower property wealth. When comparing the proportions of students in and new tier funding received by each quintile, it is clear that Quintile 5 districts receive a percentage of new tier funding that is greater than its percentage of students. The proportion of new tier funding received by each quintile then decreases alongside the quintiles. Quintile 5 districts receive anywhere from approximately five to seven times more total new tier funding than Quintile 1 districts. For example, in FY 2018, Quintile 5 enrolled
$16.3 \%(318,515)$ of the state's total students but received $37.4 \%(\$ 137,224,888)$ of the total tier funds.

Figure 16

Total tier funding and student enrollment per property wealth quintile

To better understand the extent to which EBF funds were distributed equitably across the state, EBF student enrollment across EBF tiers was analyzed with respect to student race and ethnicity. EBF student enrollment data was first disaggregated by student race and ethnicity. Secondly, these data were disaggregated across districts' tier status and their adequacy band. Figure 17 below shows the percent of each demographic group in each tier for SY 2018-19 and SY 2019-20. Tier 1 had larger proportions of Black and Hispanic students whereas Tiers 2, 3, and 4 had a much larger proportion of White students.

Figure 17
Percent of students enrolled in each tier by race and ethnicity for SY 2018-19 and SY 2019-20

Figures 18 displays the demographic makeup of each adequacy band for SY 2018-2019 and SY 2019-2020; similar trends were observed for both school years. Districts that were below 60\% in SY 2018-19 and SY 2019-20 had higher percentages of Hispanic students than districts above 60% adequacy. The percentage of White students remained above 64% for all adequacy bands above 70\%. The percentage of Black (16% in SY 2018-19 and 14% in SY 2019-20) and Hispanic (49\% in SY 2018-19 and 45\% in SY 2019-20) students in the less than 60\% adequacy band decreased slightly between the two years, while the percentage of White students increased in that same band (28\% in SY 2018-19 to 34\% in SY 2019-20).

Figure 18

Tier funding by tier and race/ethnicity for SY 2018-19 and SY 2019-20 by adequacy band

The next analysis examined the per pupil EBF by tier status for each demographic group. It is important to note that although this analysis sought to understand how EBF was distributed based on race and ethnicity, the EBF formula does not include racial demographics in the modeling. When examining per pupil funding by race as displayed in Figures 19 and 20, Tier 1 districts saw the highest per pupil EBF for all racial and ethnic groups. For example, per pupil EBF in SY 2018-19 for Tier 1 districts varied from $\$ 237$ per pupil for Black students up to $\$ 305$ per pupil for American Indian students. (See Figure 19.) Generally, the per pupil EBF was more dependent on tier distinction than on race and ethnicity. See Appendix C for more detailed information on funding by race and ethnicity.

Figure 19
Per student EBF tier funding by racial demographics across tiers for SY 2018-19

Figure 20
Per student EBF tier funding by racial demographics across tiers for SY 2019-20

Table 4 displays the changes in per pupil EBF between SY 2018-19 and SY 2019-20. Changes were calculated using a simple difference in per pupil EBF between the two years. All student groups in all tiers saw an increase in per pupil EBF with two exceptions. Two student groups, Hispanic or Latino and Two or More Races in Tier 1 districts, saw a decrease in per pupil funding between the two years (\$6.81 and \$2.53). Increases varied by tier and race and ethnicity. Asian students and Native Hawaiian students saw the greatest increase in per pupil funding between the two years with an increase of $\$ 16.40$ and $\$ 13.89$, respectively.

Table 4
Changes in per pupil EBF beween SY 2018-19 and SY 2019-20

Race	Tier 1	Tier 2	Tier 3	Tier 4
American Indian	$\$ 5.52$	$\$ 4.84$	$\$ 6.03$	$\$ 0.03$
Asian	$\$ 16.41$	$\$ 5.90$	$\$ 5.62$	$\$ 0.02$
Black or African American	$\$ 5.11$	$\$ 6.22$	$\$ 6.03$	$\$ 0.02$
Hispanic or Latino	$\$(6.81)$	$\$ 3.53$	$\$ 5.97$	$\$ 0.03$
Native Hawaiian or Other Pacific Islander	$\$ 14.12$	$\$ 1.35$	$\$ 5.06$	$\$ 0.03$
Two or More Races	$\$(2.53)$	$\$ 2.97$	$\$ 5.35$	$\$ 0.02$
White	$\$ 2.13$	$\$ 3.18$	$\$ 4.98$	$\$ 0.02$

RQ 2 Findings

The following section will begin to explore student achievement and other student outcome measures from the baseline 2017-18 school year through the 2020-21 school year in Illinois public schools. As noted in the Data Limitations section beginning on page 44 the timeline of the initial five-year evaluation and the ongoing pandemic has resulted in an inadequate data set and one that greatly limits the quantitative analysis that can be completed at this time.

Assessment Enrollment and Participation

According to the Illinois Report Card (ISBE, 2021), there was a significant decrease in public school enrollment during SY 2020-21, which is thought to be primarily due to the pandemic. Assessment enrollment and participation rates indicate lower grade levels experienced greater declines in student participation rates on the state assessments compared to the previous years; White students had a higher enrollment loss than any other student groups. (See Table 5.) As seen in Table 4, however, White students had the highest state test participation rate at more than 80% tested while Black and Hispanic students had the lowest state test participation rate on the IAR. (See Table 6.) Black and Hispanic students enrolled in Tier 1 school districts reached about 50% participation for the IAR. Similarly, ELs, students with an IEP, and low-income
students in Tier 1 are near 60% tested or lower. Additionally, Tier 1 districts have the lowest state test participations rates in IAR ELA and math (around 61\%). Similar patterns also appeared when examining participation rates for the SAT. Therefore, the 2021 assessment results are not comparable to SY 2017-18 and SY 2018-19 due to the following reasons:

1. Student enrollment declined more than expected.
2. Lower state test participation rates were observed for all demographic groups and the "All Students" group.
3. White students have more than 80% state participation rate in the IAR,, compared to a 50% participation rate for Black and Hispanic students.
4. The demographics of the test participants do not align with the demographics of the statewide enrollment population. Thus, the test results do not represent the achievement of statewide enrollment.
5. Assessment data are not based on random samples.

See Appendix D for the full data set on test enrollment and test participation.

Given the previously mentioned data limitations, it is not advisable to carry out any type of trend analysis or attempt to make causal statements using the student achievement and academic behavior indicators discussed in this section because the data is not representative of the state and may not accurately represent differences in achievement measures between students of different races and ethnicities. Instead, the proficiency and academic behavior indicator rates will be disaggregated by student groups, tier status, and adequacy bands for the years that data was available as a way to begin to understand how a district's adequacy level may be connected to student growth.

The pandemic will impact the evaluation of any interventions (including EBF) for the foreseeable future. Even as learning loss rebounds and the immediate impacts of the pandemic subside, the disruptions caused by COVID-19 have irreparably changed education and students (Organisation for Economic Co-operation and Development, 2020; Azevedo et al., Reimers, 2022) beyond just the interruptions to data and testing discussed in this report. That being said, in future iterations of this research, impact statements regarding the success of the Evidence-Based Funding formula can hopefully be made using a more detailed quantitative analysis drawn from additional years of assessment, financial, and student academic/behavior indicators utilizing statistical methods that can factor in the impacts of the pandemic. At this time, however, those statements cannot be reliably made.

Table 5
IAR ELA test enrollment by year and tier

Table 6
IAR ELA test participation rate by tier and year

	Tier 1			Tier 2					Tier 3	Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	97.6	98.6	61	98.8	99.3	74.4	98	99	80	98.2	98.7	
Targeted Groups												
English Learners	98.5	99.2	51.5	99.5	99.6	62.5	99.2	99.6	71.3	99.3	99.5	68.9
IEP	96.9	97.8	60.6	98	98.5	73.1	96.3	97.7	77.3	96.8	97	75.4
Low Income	97.9	98.8	55.6	99	99.4	67.4	98.2	99.3	70.6	98.9	98.9	67.8
Race/Ethnicity												
White	97.6	98.6	61	98.8	99.3	74.4	98	99	80	98.2	98.7	78
Black	97.9	98.6	80.7	98.7	99.2	83.2	97.7	98.8	85	97.9	98.6	82.7
Hispanic	96.9	98.3	51.9	98.8	99.2	54.9	97.4	99.2	67.1	99	97.8	61.8
Asian	98	98.9	50.3	99.3	99.4	62.9	98.9	99.3	67.6	98.8	99.1	70.1
Pacific Islander	97.6	98.8	60.1	99.5	99.7	63.3	99.2	99.4	72.5	99.4	99.5	69
American Indian	96.3	97.4	58.9	98.7	99.2	69.2	98.6	100	81	98.9	99	68.5
Two or more races	97.8	98.3	51.8	98.3	99.2	64.8	98.9	98.7	64.2	97.7	99	67.3

Table 7
IAR math test enrollment by year and tier

	TIER 1					TIER 2				
	SY 2018 Enrollment	$\text { SY } 20$ Enrollment	19 \% Change 18-19	$\text { SY } 20$ Enrollment	21 \% Change 19-21	SY 2018	$\text { SY } 20$ Enrollment	19 \% Change 18-19	$\text { SY } 20$ Enrollment	\% Change 19-21
All Students	441098	445740	101.1	419805	94.2	271286	267109	98.5	256732	96.1
Targeted Groups										
English Learner	70,009	75,539	107.9	79,874	105.7	19,297	19,201	99.5	21,900	114.1
IEP	62,768	64,969	103.5	63,592	97.9	35,715	36,425	102.0	35,885	98.5
Low Income	313,216	304,959	97.4	283,241	92.9	109,038	104,589	95.9	98,974	94.6
Race/Ethnicity										
White	138,873	141,362	101.8	129,871	91.9	168,449	163,252	96.9	152,827	93.6
Black	108,788	106,477	97.9	99,652	93.6	29,834	32,360	108.5	31,713	98.0
Hispanic	165,869	169,280	102.1	161,511	95.4	45,601	42,127	92.4	42,503	100.9
Asian	12,165	12,757	104.9	12,674	99.3	14,816	16,102	108.7	16,479	102.3
Pacific Islander	518	502	96.9	462	92.0	227	239	105.3	237	99.2
American Indian	1,547	1,272	82.2	1,159	91.1	604	526	87.1	511	97.1
Two or more Races	13,338	14,090	105.6	14,476	102.7	11,755	12,503	106.4	12,462	99.7
	TIER 3					TIER 4				
	SY 2018	SY 20		SY 20		SY 2018	SY 20		SY 202	
								$\%$		
	Enrollment	Enrollment	Change 18-19	Enrollment	Change 19-21	Enrollment	Enrollment	Change 18-19	Enrollment	Change 19-21
All Students	59462	53024	89.2	47647	89.9	109087	100038	91.7	97247	97.2
Targeted Groups										
English Learner	6,071	4,976	82.0	5,315	106.8	7,479	6,987	93.4	7,786	111.4
IEP	6,846	6,498	94.9	6,192	95.3	13,226	12,543	94.8	12,479	99.5
Low Income	17,068	13,573	79.5	13,770	101.5	21,749	20,769	95.5	19,998	96.3
Race/Ethnicity										
White	35,524	36,507	102.8	32,133	88.0	74,202	66,195	89.2	63,027	95.2
Black	4,651	1,656	35.6	1,498	90.5	3,918	4,675	119.3	4,550	97.3
Hispanic	11,593	9,074	78.3	8,552	94.2	14,355	13,741	95.7	13,812	100.5
Asian	5,237	3,896	74.4	3,708	95.2	12,449	11,203	90.0	11,251	100.4
Pacific Islander	72	63	87.5	63	100.0	90	97	107.8	110	113.4
American Indian	179	153	85.5	137	89.5	217	193	88.9	162	83.9
Two or more Races	2,206	1,675	75.9	1,556	92.9	3,856	3,934	102.0	4,335	110.2

Table 8
IAR math test participation rate by tier and year

		Tier 1				Tier 2		Tier 4				
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	97.6	98.4	60.1	98.8	99.2	73.8	98	98.9	79.2	98.1	98.6	77.2
Targeted Groups												
English Learners	98.5	99	50.6	99.5	99.6	61.6	99.4	99.4	70	99.3	99.4	68.2
IEP	96.7	97.3	59.5	98.1	98.3	72.3	96.3	97.5	76.3	96.6	96.9	74.4
Low Income	97.8	98.6	54.5	99	99.3	66.6	98.2	99.1	69.4	98.9	98.8	66.8
Race/Ethnicity												
White	97.8	98.5	80.1	98.6	99.1	82.7	97.7	98.8	84.3	97.8	98.5	81.9
Black	96.7	97.9	50.3	98.8	99.1	54.1	97.3	99.2	66	98.9	97.5	60.5
Hispanic	97.9	98.6	49.4	99.3	99.4	62.1	98.9	99.2	66.5	98.7	99	69.1
Asian	97.7	98.7	59.3	99.4	99.7	62.5	99.2	99.2	72.2	99.4	99.5	68.5
Pacific Islander	95.8	97	57.6	99.1	99.6	69.2	98.6	100	76.2	98.9	99	66.4
American Indian	97.5	98.4	50.7	98.3	99.2	63.6	98.9	98	62	97.7	99.5	66
Two or more races	97.3	98.1	66.7	98.3	98.9	69.2	96.6	98.5	75.8	98.2	98.3	75

Academic Achievement Proficiency Rates

The following section will provide a brief summary of the academic achievement rates for SY 2017-18, SY 2018-19, and SY 2020-21. In addition to the data limitations related to COVID-19, the timeframe of the current study created multiple barriers to further statistical analyses. As noted in the Data Limitations section, the funding was not disbursed to districts until the spring of SY 2017-18 so the only year with a normally scheduled funding distribution and student achievement results was SY 2018-19. As mentioned previously, the COVID-19 pandemic halted state assessments so no proficiency rates were calculated for SY 2019-20. In addition, it is important to mention again that although the proficiency rates are listed for SY 2020-21, they should not be compared to previous years due to the low test participation rates during the pandemic, making the results incomparable to previous years.

Some of the metrics described in the subsequent section are either leading or lagging indicators. As noted in the Literature Review section, there is no consensus as to the average time between a policy change and subsequent changes in lagging indicators. But it is important to note that these changes take time, and the COVID-19 pandemic has greatly disrupted much of the progress that may have been indicative of the funding changes (Mass Insight Education, 2010). For this and the aforementioned reasons, it is important to caution that the rates described are simply a way to understand the status of student achievement across the state for different tiers and student demographics. No causal statement can be made at this time to determine the effectiveness of EBF on improving student academic achievement and behavior indicators.

Despite the various data limitations, academic achievement and academic behavior indicators rates were identified for both tiers and adequacy bands by student demographics for all
the metrics described. See Appendix D and E for the full data set for all metrics. The tables in Appendix D and E show trends that are consistent with the literature in noting that students who attend adequately funded districts are likely to have higher rates of academic achievement (Baker, 2018; Baker et al., 2018; Rothstein et al., 2016) and the impetus for the funding formulas as laid out in the EBF legislation.

For example, Table 8 and 9 in Appendix E display the rates of students proficient on the ELA and math state assessments. Generally, there was an increase in proficiency rates from SY 2017-18 to SY 2018-19 and a dip from SY 2018-19 to SY 2020-21. Overall, the proficiency rates were lower for Tier 1 and Tier 2 districts (the lower adequacy bands) than for Tier 3 and Tier 4 districts (the higher adequacy bands). Proficiency rates for the ELA and math state assessments are also shown by adequacy bands (Appendix E, Tables 10 and 11). These tables show that as a district's adequacy increases, the percent of proficient students also increases. As more districts move to adequate funding, it is to be expected that student achievement measures will likely increase as well. However, given the data limitations it is impossible to make that causal statement at this time. Future research on Illinois' EBF formula will seek to investigate the full impact of increased funding on student achievement.

Academic Behavior Indicator Rates

The following section provides a brief summary of the academic behavior indicators for SY 2017-18, SY 2018-19, and SY 2020-21. As stated in the Data Limitations section, although rates for many of the metrics are provided for SY 2019-20 and SY 2020-21, the pandemic greatly impacted public schools across the state and thus a trend analysis cannot be reliably completed. Given the data limitations described in detail, the general trends will only be briefly described in this section. See Appendix F for a full list of academic behavior indicator rates for both tiers and adequacy bands by student groups. These metrics will include attendance rates, chronic truancy rate, chronic absenteeism, discipline rates (in-school and out-of-school suspension rates), ninth-grade on track, and advanced coursework rates.

Most of the academic behaviors increased between SY 2017-18 to SY 2018-19 with a dip in rates from SY 2018-19 to SY 2020-21. This pattern is similar to the pattern previously described for academic achievement indicators. Additionally, the academic behavior indicators were often lower for Tier 1 and Tier 2 districts than they were for Tier 3 and 4 districts. This pattern can also be seen in the tables showing the academic behavior indicators by adequacy band. Previous literature has shown a strong correlation between a district's funding and student outcomes over time (Baker, 2018; Baker et al., 2018; Rothstein et al., 2016). As the investment in EBF increases over time, it will be critical to examine this relationship further to understand how EBF is impacting academic behavior indicators for those districts farther from adequacy and in turn those districts receiving a bulk of EBF funds.

Qualitative Methodology

Qualitative Research Questions

The qualitative component of the evaluative study included a mixed-method approach.
Planning, data collection, and analysis were completed in close collaboration between ISBE staff and members of the PRP's Reporting Committee. The following research questions will be addressed.

Research Question 3

To what extent were the EBF cost factors reflected in district expenditures from SY 2017-18 to SY 2018-19?

- Which of the EBF cost factors represent how districts changed staffing for their schools?
- Which of the EBF per pupil cost factors represent how districts changed (e.g., gifted, instructional materials, assessment, student activities, maintenance and operation, and central office)?

Research Question 4

Among schools that improved, which systemic and organizational change elements were used to improve student performance and close opportunity gaps?

Research Question 5

How do changes in funding and circumstances influence the implementation of EBF from year to year? What was the overall effect of EBF on districts?

- How did the COVID-19 pandemic change the way districts approached the use of EBF?
- Did certain EBF cost factors become more or less important depending on the context?
- What are the effects of the lack of additional (or delayed) EBF?
- What are the effects on student outcomes? Did districts change their practices from SY 2018-19?

As posed, the research questions evaluate how well the 34 EBF cost factors outlined in the legislation represent districts' allocation of funds. It is important to note that EBF funds are unrestricted. There is no directive included in the legislation that requires alignment between districts, resource allocation decisions, and the cost factors. However, the cost factors embedded in EBF are evidence-based and research was used in the development of the formula to determine each school districts' Adequacy Target. Therefore, there is merit in evaluating how districts used the research that informed the formula to prioritize resource allocation decisions while being mindful that these decisions are made at a local level based on an individual district's needs.

Sample Selection

Identifying participants for the qualitative component of this evaluative study occurred through a three-step process. The process included an initial statistical analysis to identify improved schools, agreement to participate by district administrators via a digital survey, and active recruitment of interviewees and focus group participants. A detailed description of the sample selection follows.

Initial Sample Selection

The initial proposal was developed by the PRP in 2018. At inception, the goal was to solely focus on Tier 1 districts given that the bulk of the tier funding goes to directly to those districts. In addition, the goal was to complete a successful school case study approach to help home in on the specific cost factors that were creating positive system and organizational change
in schools across the state. That proposal led to the development of the current sample, which focused on schools in Tier 1 districts that showed improvement in the first two years of implementation.

The sample for the qualitative component of the evaluative study was determined by a statistical analysis. To identify schools from Tier 1 districts that showed significant improvement from SY 2017-18 to SY 2018-19, the combined proficiency rates for Partnership for Assessment of Readiness for College and Careers/IAR, SAT, and DLM-AA data were analyzed. There are several conditions required for schools to meet in order to be identified as "showing improvement." School size varies widely from 15 to 4,522 students, so z -scores were calculated from the combined ELA and math proficiency rates to determine if the improvement was significant. With 95% confidence, schools with z-scores at or above 1.645 were considered to show statistically significant improvement. Additionally, if a school showed at least a 5\% increase in proficiency in ELA and math combined, it was also considered to be statistically significant improvement since the 5% increase occurred within the top decile of schools in the state. All schools identified must first meet one of the above criteria (z-scores at or above 1.645 or proficiency rates at least 5 percentage points higher) to be considered as "showing improvement."

All schools that met the first condition above must have also met the conditions below to be included on the final list.

1. There was an increase in ELA proficiency results for the All Student group.
2. There was an increase in math proficiency results for the All Student group.
3. Each of the targeted student groups (Black, Hispanic, IEP, EL, or Low Income) within a school must have met one of two conditions to be considered for identification in both

ELA and math. First, when looking at the ELA results, if the targeted student group has no decreases in proficiency or has narrowed the achievement gap between percent proficiency for the targeted student group at the school level and percent proficiency for the All Student group in the state, the targeted group meets the criteria for initial identification in that subject area. The same conditions apply for math. A school must meet one of the two conditions for each targeted student group and in both subject areas in order to be identified.

Eighty-seven schools from 65 districts met all criteria after the validation of the selection criteria.

Participant Characteristics

All 87 schools across 65 districts were invited to participate in the qualitative component of the evaluation. ISBE worked in conjunction with the Illinois Association of School Administrators (IASA), Illinois Principals Association (IPA), Illinois Education Association (IEA), and Illinois Federation of Teachers (IFT) to recruit participants for the study. After three months of recruitment, 38 schools from 27 districts chose to participate. The sample characteristics can be found in Table 9. The table shows the state characteristics, the initial sample selection, and the districts that chose to participate in the study.

Eight out of ten regions were represented in the sample excluding North Cook and East Central. (See Table 9.) There was an even split between unit and elementary district types. Additionally, although there were no high school districts included in the study, there were several high schools from unit districts included. All different district sizes were represented in the sample. Table 10 shows the Percent of Adequacy for the districts and how minimum and maximum Percent of Adequacy of districts in the study compare to the statewide minimum and maximum. Lastly, Figure 21 displays the counties that were represented in the qualitative study.

The color scale represents the number of schools that participated in the study from each respective county.

Table 9
Qualitative district sample characteristics

	State$(n=865)$		Original Sample$(n=65)$		Respondents$(n=27)$	
\# of Schools	3872		87		38	
	n	\%	n	\%	n	\%
Region						
City of Chicago	1	0.1\%	1	1.5\%	1	3.7\%
East Central	112	13.1\%	3	4.6\%	0	-
North Cook	39	4.6\%	0	-	0	-
Northeast	161	18.9\%	6	9.2\%	2	7.4\%
Northwest	121	14.2\%	5	7.7\%	3	11.1\%
South Cook	66	7.7\%	8	12.3\%	3	11.1\%
Southeast	123	14.4\%	19	29.2\%	7	25.9\%
Southwest	83	9.7\%	13	20.0\%	6	22.2\%
West Central	108	12.7\%	7	10.8\%	2	7.4\%
West Cook	38	4.5\%	3	4.6\%	3	11.1\%
District Type						
Unit	390	45.1\%	39	60.0\%	13	48.1\%
Elementary	372	43.0\%	26	40.0\%	14	51.9\%
High	102	11.8\%	0	-	0	-
District Size						
Large	215	24.9\%	22	33.8\%	10	37.0\%
Medium	429	49.6\%	30	46.2\%	9	33.3\%
Small	214	24.7\%	13	20.0\%	8	29.6\%

Table 10
Qualitative district sample Percent of Adequacy min and max in FY 2018 and 2019

	State					
$(n=865)$	Original Sample	Respondents $(n=65)$		$(n=27)$		
Min	Max	Min	Max	Min	Max	
FY 2018	46.10%	64.60%	51.05%	64.49%	52.73%	64.49%
FY 2019	47.20%	65.50%	51.95%	68.65%	55.86%	68.65%

Figure 21
Counties represented in the qualitative sample

Note: The scale represents the number of schools within each county included in the qualitative study.

Table 11 examines the demographic makeup of the schools in the study. Analysis for this table utilized data from the SY 2018-19 Report Card. The schools represented in the study are nearly aligned to the statewide sample. There is a greater percentage of majority Black and majority Hispanic schools represented in both the survey and the interviews and focus groups than there are statewide.

Table 11
Qualitative school sample characteristics

	State $(n=3,872)$	Original Sample $(n=87)$	Survey Respondents $(n=38)$		
Demographics	n	$\%$	n	$\%$	n
Majority White					
Majority Black	1917	49.5%	47	54.0%	21
Majority Hispanic	467	12.1%	11	12.6%	7

Note: A majority in a specific school, for the purpose of this analysis, was any school with \geq 60.0% of White, Black, or Hispanic students.

Data Collection Tools

Survey

As noted in the Data Limitations section of this report, ISBE currently only tracks data for 12 of the 34 EBF cost factors outlined in the legislation, so a digital survey was developed to ascertain additional data regarding the remaining cost factors. A digital survey (Appendix G) was distributed via the ISBE website requesting district administrators to report on the 34 cost factors.

Reporting on the 34 cost factors included full-time equivalency (FTE) or per pupil investments (see Appendix G) that were used between SY 2017-18 and SY 2018-19. The survey also included three open response questions that allowed districts to provide a rationale for their prioritized investments. The survey was sent to the districts identified by the statistical analysis discussed previously. Both ISBE and IASA sent requests for the 65 districts to participate in the study.

District Administrator and Principal Interviews

Administrators and principals from districts that opted into participating in the evaluative study by completing the digital survey were invited to participate in an interview. Interview protocols were created in collaboration with members of the PRP's Reporting Committee and the ISBE Research Department. School improvement and finance reform literature guided the creation of the protocols. (See Appendix H for a list of district administrator interview questions.)

The sample for the interviews was selected based on the successful completion of the survey. Initial invitations to participate in an interview were sent by IASA and IPA. Representatives from both entities facilitated the interviews.

Educator Focus Groups

As with the interviews, once a district opted into the evaluative study by completing the digital survey, invitations to participate in focus groups were sent out to educators in the targeted schools. Focus group protocols were created in collaboration with members of the PRP's Reporting Committee and the ISBE Research Department. School improvement and finance reform literature guided the creation of the protocol. (See Appendix I for a list of focus group questions.)

The sample for the focus groups was determined by the successful completion of the survey. Initial invitations to participate in the focus groups were sent by the IEA and IFT. Representatives from both entities facilitated the focus groups.

Analytical Approach

Survey Analysis

After data collection was completed, the survey results were combined to identify trends across districts and schools. To identify those trends, a simple difference in expenditures was calculated for each school between SY 2017-18 and SY 2018-19. Next, the count of schools with either an increase, decrease, no change, or no response was calculated for each of the 34 cost factors. Given the limited data on all 34 cost factors, this provided a more detailed examination of expenditures in districts across the state.

Interview and Educator Focus Group Analysis

ISBE staff and staff from Advance Illinois worked collaboratively to analyze the interviews and focus group transcripts. The team utilized an inductive analysis approach, which uses an open coding scheme and constant recalibration and comparison. Additionally, this qualitative research method is intended to build a conceptual understanding of a topic without a set hypothesis. More importantly, this methodology was used to increase objectivity and minimize confirmation bias in the coding process. Initial transcripts were coded, and emerging themes were identified from those initial codes. Next, the team formalized the coding scheme by devising a coding dictionary. The coding dictionary identified codes that could answer all the research questions outlined previously. (See Appendix \mathbf{J} for a full list of codes and definitions used in the analysis.)

The next step included rounds of coding using the coding dictionary. Intercoder reliability was tested throughout the process to ensure accuracy. All transcripts were coded to identify emerging patterns and draw conclusions. Finally, after coding was complete, the team
used a variety of analytical tools, including coding matrices and coding counts, to identify patterns and examine the occurrences of these patterns based on district demographics.

Qualitative Findings

Although this study is primarily focusing on the implementation of EBF since 2017, it is impossible to disentangle the effects of previous funding mechanisms on how districts approached resource allocation. It became apparent during the analyses of transcripts that understanding the lingering impacts of GSA and years of proration was an important component for evaluating EBF at present. Many participants, the majority of whom were district administrators, indicated that districts were financially struggling prior to EBF. Numerous districts had outdated materials and curriculum, unfilled positions, and were cutting programs and staff (e.g., reduction in force) due to insufficient funds. Underfunding and proration had prompted districts to cut positions, such as social workers and counselors. They also had to combine positions or not replace staff that left. A district administrator noted that,
"The legislators need to know that it would be wonderful to say that we built and moved forward with those dollars. They need to understand that due to proration and GSA and years of woefully underfunding, there are districts like ours, and probably hundreds like them, (that) did nothing more than give the basics to what other districts north of I80, Tier 3 and Tier 4 schools, have had and been able to provide their children for decades."

Numerous districts were so far under budget prior to EBF that they are just now starting to meet some of their basic needs or get out of debt. This common theme will be explored throughout the subsequent findings section as it was a prevalent backdrop for administrators and educators when discussing how they approached utilizing the additional tier funding. The digital survey and
transcripts were used to answer Research Questions 3-5. The following section will describe the findings.

RQ 3 Findings

The digital survey asked districts to report on all 34 cost factors. As seen in Appendix G, Part 1 and Part 3 asked districts to report FTEs at the school level for all associated cost factors. Part 2 asked districts to report expenditures on the per student investments. All data included in this section is self-reported and was not validated after it was reported due to time constraints and data limitations.

Districts and schools varied greatly in size, so comparisons were not made between districts; rather, a simple difference (increase or decrease) was identified for each cost factor at each school. Another category, no change, was created to identify schools that did not make any changes to a specific cost factor. Lastly, there were several districts that did not include a response for a specific cost factor. For that reason, a no response option was calculated. No response could mean that the cost factor category did not apply to that school (e.g., "Core Teacher K-3" for a school that serves Grades 5-8) or it could mean that the school chose not to report on that specific cost factor. For that reason, the analysis will focus on the following categories: increase, decrease, and no change. See Appendix K for a full list of survey responses.

Next, interviews and focus groups transcripts were coded to identify ways that districts discussed how they made resource allocation decisions based on the cost factors. Participants were shown a one-page summary of their school's response from the digital survey; the survey and the transcripts were both used to examine the resource allocation process. The initial question posed by the PRP focused on examining how closely the EBF cost factors represent actual district expenditures. It is important to remember that EBF funds are unrestricted; thus,
districts do not have to allocate funds per the legislation. The EBF cost factors are intended to establish a common understanding of the minimum cost to provide a basic standard of education to all students. Subsequently, it was important to identify how a district's context impacted its decision-making process to cater to the specific needs in their community.

Who Drives the Decision-Making Process?

When participants were asked to discuss the resource allocation process, there were differences in the perception of who was driving resource allocation. Both administrators and educators discussed the importance of school-based collaboration and discussion to drive the decision-making process when determining how to allocate the additional tier funding. This collaboration occurred at both the district and school level. The district level included budget discussions, strategic planning, and districtwide initiatives. School-based discussions often centered around programmatic decisions, including curriculum or staffing decisions. There was a more positive sentiment from principals and educators when collaboration occurred, and participants spoke about "feeling heard." The term "collaboration" was used broadly. Some participants used "collaboration" to describe general conversations with administrators whereas some use the term to describe a more formal needs assessment. See Appendix K for a list of the frequencies.

Although this collaborative nature occurred at all levels, many participants across the board reported that district leaders were the primary drivers of the financial decision-making process. (See Appendix K, Table 40.) Oftentimes, when participants (principals and educators) discussed this sentiment, they stated that they did not feel as though district administrators had adequate input from external groups when making decisions. Even when district administrators stated that the decision-making process was done primarily by district leadership, they detailed a
variety of tools used to determine resource allocation. Educators who thought decisions were primarily made at the district level felt that they had little input regarding the budget and how resources were allocated. Some educators, often in larger districts, felt that this was appropriate given the vast district needs. Other times, educators were frustrated by this and felt that their needs were not being met because of the lack of input.

What Tools Were Used to Determine Resource Allocation?

One of the driving forces of the resource allocation process by district leaders was the use of student academic outcome data. The first step for many leaders was to identify the needs of the district using analysis of student achievement measures. Assessment data (e.g., NWEA, IAR) was a primary driver in determining staffing. For example, leaders discussed adding a reading interventionist to the lower grades or a math interventionist to the middle grades based on students' test scores. Many district administrators detailed a specific focus on low-income, special education, and English learners when determining their budgets. ${ }^{30}$ This was especially prominent in districts that experienced a demographic shift in the last decade that necessitated additional staff or resources to support the needs of these students.

In conjunction with student academic outcome data, district leaders used research or the EBF model as their foundation for decision-making. Many of the district administrators in the sample stated they used the legislation and the engrained ratios as a structure to determine resource allocation decisions. Because many districts are still significantly below adequacy, administrators discussed using the effect size to determine the best course of action for their district and prioritized cost factors that had higher effect sizes. Many leaders felt as though they

[^22]had a duty to ensure that these funds went directly to students so that the state would continue to invest in EBF. Participants shared a sense of responsibility and need to be good stewards of state funding.

Three districts went as far as creating an EBF model for distribution of funds to schools within their individual districts. Reasons for this were varied. One district was focused on ensuring equity in its resource allocation decisions and felt as though the EBF model adequately did that. Another district used the model to get its school board invested in the budget so it could continue with its investments as planned.

Another common tool used to prioritize investments was a district needs assessment. Districts either carried out formal needs assessments or took a more general approach in examining student demographics. Formal needs assessments evaluated need by student demographics, academic outcomes, and community need. Needs assessments were rooted in student data and student driven, with leaders matching their budgets to those specific needs that were identified.

Which Cost Factors Are Represented by Districts' Investments?

Using the digital survey and patterns gleaned from the interviews and focus groups, a clear picture of the different types of investments represented by the cost factors began to emerge. The next section will discuss the digital survey and coding from the transcripts in concert. Table 12 on the next page displays the top five cost factors in each investment category reported on the survey or discussed in the interviews and focus groups in descending order of occurrence. The second column shows the most frequently discussed cost factors from interviews and focus groups. These transcripts included responses from district administrators, principals, and educators. The third column in Table 12 is solely dependent on responses from
district administrators who completed the digital survey. The structure of data collection and different participant perspectives may contribute to the differences in the frequencies of the cost factors listed below. For instance, interview and focus group questions focused on school improvement which may have led to many participants focusing on investments that are more directly tied to schools (e.g., instructional materials or computer and tech equipment) versus when filling out a digital survey that asked district administrators to report on all 34 cost factors.

Table 12
Top 5 cost factor investments based on transcripts and survey results

	Transcripts	Survey
Core Investment	Instructional Facilitator	Core Teachers K-3
	Core Teachers	Core Teachers 4-12
	Core Intervention Teachers	Specialist Teachers K-8
	Specialist Teachers	Instructional Facilitators
	Pupil Support Staff	Specialist Aide K-5
Per Student Investment	Instructional Materials	Benefits
	Computer and Tech Equipment	Professional Development
	Professional Development	Central Office
	Computer and Tech Pandemic	Instructional Materials
	Assessments	Maintenance and Operations
Additional Investment	Social Worker	Other (Social Worker)
	Special Education Teacher	Special Education Instructional Assistant
	Low-Income Extended Day Teacher	Special Education Teacher
	English Learner Intervention teacher English Learner Core Teacher	Low-Income Intervention Teacher Low-Income Pupil Support Staff

Core Investments. ${ }^{31}$ When examining the Core Investment category, instructional facilitators were a primary investment noted on the survey and in the transcripts. Per the EBF legislation, instructional facilitators are qualified or licensed teachers who facilitate and coach continuous improvement in classroom instruction through a variety of supports. Districts at all levels invested in instructional facilitators and many noted that there was no way their district would have been able to afford an instructional facilitator prior to EBF. If a district had an instructional facilitator prior to EBF, the additional EBF funds allowed it to add one instructional facilitator per building or add more supports for teachers in a building.

The next most common Core Investment seen both on the survey and the transcripts was the additional investment in core teachers. The legislation defines "core teachers" as those regular classroom teachers in elementary schools and teachers of a core subject in middle and high schools. Many high schools focused on adding back previously cut courses or expanding course offerings by adding core teachers, whereas elementary and middle schools focused on bringing more core teachers to decrease class size. Importantly, district administrators discussed that prior to EBF, adding a core teacher was not a viable option, leaving them with large class sizes. A number of districts spoke about the need to add teachers back after years of proration and disinvestment.

Along with core teachers, core intervention teachers were another common investment using EBF funds. The legislation defines an intervention teacher (tutor) as a licensed teacher providing one-on-one or small group tutoring to students struggling to meet proficiency in core

[^23]subjects. This was especially prevalent in either Elementary districts or in Unit districts targeting Elementary Schools. Reasons for adding an intervention teacher varied, but oftentimes it was to provide more targeted supports, either in reading or math, or to increase supports for school. Participants felt very confident about their decision to invest in a licensed interventionist, but a number of districts mentioned that they were hesitant to make a staffing investment given the lack of continuity in funding in previous years. Additionally, ESSER funds seemed to help with the continuation of this investment despite the lack of EBF funds in FY 2021.

Districts not only invested in educators to support core subjects but also made investments to support the "whole child." Although social workers fall under pupil support staff in the EBF model, they were separated into a stand-alone category in order to get a clearer picture of districts that invested in a licensed social worker. Oftentimes, districts moved from having to split social workers across schools to employing one social worker per school and allowing that social worker the time to work with general education students. Many of the smaller districts spoke about the importance of adding a social worker for the entire community, not just the students in the building. Lastly, an overwhelming majority of districts that invested in social workers stated how grateful they were that they had made that decision prior to SY 2019-20, as it was a critical component to the continuity of student success during the pandemic.

Although an investment in core intervention teachers was much more common at the elementary level, investing in specialist teachers was common for many high schools. Specialist teachers can be defined as a teacher who provides instruction in subject areas not included in core subjects, including, but not limited to art, music, physical education, health, driver education, career and technical education (CTE), and such other subject areas as may be mandated by state law or provided by an organizational unit. The addition of specialist teachers
allowed for additional courses in a way that was not possible before EBF. One district administrator/principal spoke about the needs of the community being filled by adding a CTE teacher to support students who transitioned straight from high school to their career. Another district spoke about being able to add 13 different electives since the implementation of EBF.

Per Student Investment. ${ }^{32}$ When examining per student investment cost factors, there were mixed responses between the digital survey and the transcripts. Benefits, maintenance and operations (e.g., custodial services, facility and ground maintenance, facility operations, and other similar services and functions), and central office (e.g., individual administrators and support service personnel charged with managing the instructional programs, business, and operations and security of the organizational unit) were a much larger investment according to the digital survey than the transcripts. One explanation for this trend is the questions that were posed in the interviews and focus groups. The questions were largely focused on how schools improved, and although those cost factors are critical to the success of a district at large, they may not have as strong of a line between allocation decisions and student outcomes; hence, that is why they were not discussed with as much detail in the interviews/focus groups.

The instructional materials cost factor was discussed at all levels and often cited as a very necessary investment for student success. Instructional materials, per the legislation, can be defined as relevant instructional materials for student instruction, including, but not limited to, textbooks, consumable workbooks, laboratory equipment, library books, and other similar materials. Many administrators stated that they needed to update old and outdated curriculum

[^24]because, prior to EBF, some districts felt like these investments were out of reach. A concerted effort was made by administrators and educators to invest in research- and standards-based curriculum. Educators specifically spoke about the necessity of this updated curricula to improve student outcomes, including curricula targeted towards their specific populations (EL students, students with IEPs).

Another common investment was in computers and technology. EBF defines this as computer servers, notebooks, network equipment, copiers, printers, instructional software, curriculum management courseware, and other similar material equipment. These investments were seen as investments in science, technology, engineering, and math (STEM) education at large and included everything from Chromebooks to Promethean boards to software. One-to-one technology was a major push for many districts across the state. When discussing this initiative, many district leaders noted that this investment was necessary to pursue equity and ensure that every child has access to technology from their homes. This was discussed most frequently in response to or seemed to intensify as a result of the pandemic. Both districts in rural areas and urban areas discussed the importance of technology accessibility. One way districts used these funds was to invest in wireless internet hotspots. Two districts discussed hiring additional staff to assist with training teachers on technology and to assist with the logistics of the additional technology. As many districts and educators considered investments in computers and technology, they noted the importance of this investment as their technology needs skyrocketed during the pandemic. Many felt that these investments in SY 2017-18 and SY 2018-19 allowed them to transition to remote learning much more quickly than they might have had EBF not been in place.

Both educators and administrators noted investment in professional development or training programs for licensed staff in schools. This training can include programs that assist in implementing new curriculum programs, provide data focused or academic assessment data training to help staff identify a student's weaknesses and strengths, target interventions, improve instruction encompass instructional strategies for English learner, gifted, or at-risk students; address inclusivity, cultural sensitivity or implicit bias; or otherwise provide professional support for licensed staff. There was a general increased investment in professional development while the focus of the PD variety greatly in the interviews and focus groups. Both internal (teacher leaders, instructional facilitators) and external (consultants, nonprofit) PD opportunities were discussed. A number of district administrators noted the importance of this investment in being able to develop effective teachers.

Additional Investment Cost Factor. ${ }^{33}$ This category of cost factors was the least discussed in interviews and focus groups with one exception. As noted previously, adding licensed social workers, was an investment that was a priority before the pandemic and became even more critical during the pandemic. One investment that was discussed in great detail on both the survey and in the interviews was an investment in social-emotional learning (SEL). Although SEL is not a cost factor on its own, it is embedded in many different cost factors. ${ }^{34}$ One district administrator spoke about how the continued EBF investments will allow the district to invest more holistically in SEL supports for its most vulnerable students. Another district

[^25]administrator discussed creating a special position, "Coordinator of Student Success," because the district could not find a licensed social worker. Lastly, a number of districts invested in a research based SEL curriculum so that the burden of providing supports to students would not fall on educators.

RQ 4 Findings

Interview and focus group participants were asked to discuss what elements they believed contributed to systemic and organizational changes that they have observed or believe have contributed to improvement in student outcomes. It is important to note that this question is subjective, and therefore not indicative of the presence or strength of a causal statistical relationship between school inputs and outcomes. Rather, it provides qualitative evidence of the change and improvement inputs that agents within the educational contexts associate with progress.

Additionally, participants were asked about "systemic and organizational change" broadly in this question. They were not asked to attempt to specifically relate the role that funding received through the Evidence-Based Funding formula (as opposed to funds from other sources like federal Title I funds or other state grants) played in these changes. However, many participants' responses built upon their explanations of the programming or staffing that EBF dollars enabled them to purchase (detailed in the Research Question 3 section) and contextualized how they understood those investments as fitting into the larger framework of school change and improvement. In many cases -- though not all -- participants specified changes aligned with the research on evidence-based practices and investments upon which the model is based. By and large, patterns in participants' responses suggested that the evidencebased cost factors that they were able to invest in during the time period covered by this study
were each individual components of larger approaches to supporting students and improving outcomes. Because the participants all work in Tier 1 districts, which are furthest from full and adequate funding, they thus far have only been able to invest in some of the components, or cost factors, they would need to fully implement these strategies and meet their goals. This highlights the importance of continuing to fully fund EBF so that additional cost factor investments can be made, allowing for a more robust approach to improving student outcomes.

Participants' responses to Research Question 4 fall into three broad thematic groups. As they spoke about the elements of systemic and organizational change that contributed to improvement in student outcomes, participants mentioned 1) making changes to staffing, 2) engaging in and executing against strategic planning, and 3) working to improve instructional quality. There is overlap between these three themes - one can imagine, for example, a district working to improve instructional quality by hiring an instructional coach (a staffing change) as part of a broader strategic vision for improvement. But for the purposes of addressing this research question, it is valuable to explore how participants characterized each type of change and how it played out within their schools and districts.

Changes to Staffing

When participants spoke of staffing changes as a critical adjustment, one that they associate with improving student outcomes over the last five years, they referenced adding staff, the positive impacts of consistent staffing, and changing student-to-staff ratios. Participants described both creating new positions and filling existing open positions as changes enabled by EBF that they believe contributed to improvement in student performance. As noted in Research Question 3, districts reported hiring additional staff across a variety of positions, from administration and central office to school-based positions, which included both instructional and support staff.

Many districts described adding staff as a necessary change in order to bring back or fill positions that had been cut in previous years due to insufficient funding. Some district leaders noted having to start with basic core positions, hiring teachers in subjects like English and math. The fact that such core positions needed to be filled in these districts was referenced as a testament to the depth of need in districts that are furthest from full funding and the past impacts of inadequate state funding. It also suggests that these districts have a long way to go before they are able to provide all the comprehensive supports included in the full set of EBF cost factors, given that the first several years of new funding through the formula was needed for such basic priorities.

Other districts reported that they added staff like counselors, aides, and paraprofessionals, with a focus on whole-student supports that include social-emotional learning and addressing students' mental health needs. They explained that a growing understanding, informed by research as well as anecdotal evidence, of the relationship between providing these types of supports and enabling students to more fully reach their academic potential and develop critical
social-emotional competencies, informed the increased emphasis placed on these kinds of positions.

Several districts added positions to address the needs of specific student groups, including adding bilingual coaches to support EL students and hiring special education teachers. As previously discussed, administrators from high schools and districts that include high schools mentioned adding teachers certified to teach Advanced Placement and International Baccalaureate classes in order to increase access to advanced coursework for their students, while others at the elementary and secondary levels added teachers who could provide electives like art or music in order to diversify and round out class offerings. Interventionists and reading specialists were added by several districts to provide additional academic support for students, while other districts chose to hire instructional coaches to provide training and professional development to teachers. Educators, principals, and administrators all suggested that part of the positive impact of adding staff in any of the aforementioned categories was balancing workloads, which in turn improved the morale and culture within the school building.

In addition to adding new staff, participants reported that consistency of staffing - the ability to plan with the confidence that they could afford to retain current or new staff rather than anticipating future cuts or having to constantly adapt to high rates of turnover - had a positive impact on organizational culture, and suggested that this stability in staffing contributed to overall school improvement.

Many participants pointed out the link between hiring enabled by EBF and the ability to reduce staff-to-student ratios - indeed, the goal of reducing class size was reported by several as one of the primary reasons for hiring additional staff. Small class size, defined by research and in the EBF cost factors as classes with a student-to-teacher ratio of or below 15 to 1 in Grades K-

3 and 25 to 1 in Grades 4-12, is one of the components of EBF with the most robust evidence of effectiveness for improving student outcomes. Many districts described rapid and dramatic increases in their class sizes in the years prior to proration - in some cases jumping from 16 students in a class to as many as 39 in a single class - as they reduced staffing during the period of proration. The strong evidence for the positive impact of reducing class size, coupled with the conditions created by underfunding, led many school and district leaders to cite this as both one of their primary strategies for supporting student learning and one of the first things to which they dedicated EBF funds. Teachers who mentioned decreasing class size and student-to-staff ratios noted that it has had a positive impact for educators as well as students, because more staff means educators can spend more time giving students additional one-on-one or small group support when needed. It also helps distribute the workload and reduce strain on educators' mental health that can lead to burnout.

Strategic Planning

In relation to engaging in and executing against strategic plans, participants spoke about shifting management style and approach to emphasize goal-oriented planning, employing datainformed decision-making, utilizing progress monitoring for continuous improvement, and working to improve school climate and culture. Principals and district leaders in particular noted that additional funding received over the last five years enabled a shift in their leadership and management approach from one focused on maintenance to one aimed at improvement toward specific goals. They described moving toward a more systemic, coordinated approach to resource use and decision-making grounded in goals set at the district level and aligned all the way down to the classroom level. Teachers highlighted openness to creative approaches, changes to
structures and processes, and continuous improvement as aspects of school and district leadership that they believed contributed to progress during the time period of this study.

A large subset of participants, including educators as well as principals and superintendents, mentioned using data and progress monitoring to guide decision-making and targeting of resources and supports. Several mentioned formative and summative math and reading assessments as a key data source for informing this kind of sense-making, needsanalysis, and improvement-planning work. Others pointed to Every Student Succeeds Act (ESSA) accountability data as a source that provided information about multiple metrics and that helped districts understand where to prioritize efforts to improve outcomes like graduation rates at the high school level. Some participants mentioned using a combination of entry assessment data to identify gaps in students' skills and knowledge and formative assessment data on an ongoing basis to inform instruction.

Teachers shared that assessment data was used within classrooms to differentiate instruction for small groups of students (Renaissance Star data was mentioned as particularly useful for this purpose). Professional learning communities meeting at least once a month were referenced as structures that provided educators with the opportunity to come together and consider student- and classroom-level data with peers. Data were described by principals and district leaders as driving instructional planning as well as hiring and staffing decisions, such as bringing on instructional coaches, as well as budgetary decisions like purchasing new curricula. On the back end, improvement in student outcome data was pointed to as a gratifying source of evidence that improvement efforts are paying off.

Shifting mindsets and focusing on creating a healthy and supportive school climate and culture was pointed to by educators and administrators alike as a critical component of
improving school outcomes. For some districts, this meant creating a cohesive, aligned culture and identity across multiple schools in the same district. In unit districts, in particular, it meant increasing vertical alignment and a sense of shared responsibility and ownership between elementary, middle, and high schools. Another condition participants noted as fundamental to enable EBF investments to have the desired impact was the creation of a school culture grounded in organizational learning and continuous improvement. Members of staff at all levels have to be willing to learn and open to change if they are to take advantage of newly provided professional development opportunities or to implement new data collection or progress monitoring tools and protocols. Investments in cost factors like instructional facilitators help build these organizational capacities, according to participants.

Improving Instructional Quality

Focusing on improving instructional quality was another prevalent theme shared by participants as a mechanism for positive change within their schools and districts. In this arena, participants spoke about the importance of implementing high-quality curricula, prioritizing professional development, and increasing the use of technology for instruction.

In terms of implementing high-quality curricula, participants described purchasing and implementing new curricula during this time, often following analysis of previous curriculum that showed it was outdated or not comprehensive enough/aligned to standards. Many mentioned adopting new, standards-aligned curriculum in core subjects like math and reading, with the express intent of improving student outcomes. School and district leaders mentioned approaching changes to curriculum systematically, working to ensure that new curriculum was high quality and aligned to learning standards, and also aligned vertically across grades and horizontally across classrooms within the school.

Both administrators and educators mentioned that it was helpful that their schools paired implementation of new curriculum with professional development to ensure that staff was trained and equipped to effectively utilize new curriculum. One administrator mentioned a transition to competency-based education as a change in the district's approach to instruction that has helped increase postsecondary readiness among its student body. In addition to changes to academic curriculum, participants mentioned adopting age-appropriate school- or district-wide socialemotional learning curricula and approaches.

Across all categories of participants, prioritizing and investing both time and financial resources in professional development for school staff was considered instrumental in improving instructional quality. District administrators noted that setting clear goals and creating learning plans around different areas of professional development proved helpful, including identifying areas of focus for PD (e.g., instruction, SEL, classroom management, and assessment). Educators and administrators also noted that investments in other resources like new curricula, new local assessments, increased focus on SEL, and data-driven decision-making all necessitated more PD in order to enable staff to effectively leverage these new tools.

Participants also noted the importance of creating the infrastructure for professional learning to be an embedded and ongoing part of the educational experience and approach within the district, rather than occasional one-off experiences. Hiring instructional coaches to model instruction and act as sounding boards for educators was pointed to by district and school leaders and educators alike as an invaluable way to learn new techniques and improve instruction and make sure learning experiences were ongoing. Professional development was also pointed to as a way to help teachers gain more diverse skills and competencies needed to meet the complex
needs of their students beyond simply delivering classroom content-based instruction (e.g., attending to the needs of the whole child).

Increased expenditures on technology was referenced in the section outlining findings for Research Question 3 as a category that participants mentioned spending EBF funds on. The link between this priority and COVID-19 will be explored in the following section related to Research Question 5. However, it is worth noting that in this section technology was also an investment participants mentioned in relation to supports that helped improve instructional quality and, thus, student outcomes. They pointed out that, even before the pandemic, in the first couple of years of EBF implementation, it was already clear that technological competencies were a critical $21^{\text {st }}$ century skill that students need in order to succeed in postsecondary education and careers. School leaders recognized access to technology as an equity issue that reinforced equity gaps between students whose families could afford devices and connectivity and those that could not. And finally, instructional technology allows for development and deepening of knowledge and skills across various subjects and content areas. All of these reasons were cited as rationale for investing in technology in SY 2017-18 through the present as part of districts' push to improve instruction.

RQ5 Findings

Research Question 5 aimed to answer how changes in funding and circumstances influenced the implementation of EBF as well as the overall effect of EBF on school districts in Illinois. To begin addressing these questions, it is important to understand the unique contextual factors underlying the first five years of EBF implementation.

COVID-19 Pandemic

First and foremost, the pandemic undoubtedly affected how EBF played out across school districts. Regarding the impacts of COVID on EBF, participants highlighted districts' increased investments in technology, mental health supports, and physical resources. In some districts, ESSER and CARES funds helped supplement funding to maintain EBF programs, while also adapting to circumstances that resulted from the COVID-19 pandemic. Most districts provided one-to-one technology for students. Some technology investments were already a part of districts' longer-term goals but were expedited due to the pandemic. Many participants observed an increase in social-emotional issues amongst students during this time. Consequently, districts are using, or increasing, SEL supports. Some districts had already made these investments with EBF funds but are seeing the benefits now due to increased need, while other districts invested as a response to the pandemic. The process of interviewing and facilitating focus groups yielded a wealth of valuable information that detailed how resource allocation decisions were made during the pandemic. Although those findings are incredibly informative and important for leaders to understand, it is advised that they will be described in a separate report, which will focus on the special circumstances during this time.

No New Tier Funding in FY 2021

Another piece of context important to this five-year evaluative study was the lack of tier funding disbursed in FY 2021, a result of tiers not being assigned that year due to the pandemic. Generally, there were two trends of responses when district administrators, school principals, and educators were interviewed on the topic. The first trend noted that a lack of funding negatively impacted schools; the other stated that a single year of missed new tier funding, compounded by
the fact that districts received federal pandemic relief via ESSER and CARES, did not lead to noticeable change in district budgets for FY 2021.

Specifically, a number of participants, most of whom were district administrators, noted that receipt of ESSER and CARES funds masked the lack of EBF funds for one year; several of these participants, however, did note that if no new tier funding had continued past 2021, districts would have been negatively impacted. Another district administrator who saw no discernable impact on their bottom lines cited the size of their district (small) as a possible reason they didn't notice a difference. One district administrator actually noted no significant impact on budget despite the lack of tier funding because their district's expenditures decreased during the pandemic as the need for certain resources declined or disappeared (e.g., transportation).

Those who noted a negative impact of the lack of tier funding in FY 2021 indicated so for several reasons. First, many participants noted that the disruption to funding led to a disruption in cost factor planning. District administrators were unable to hire a variety of school staff, including instructional specialists, as planned; were forced to cut or not expand certain positions; halted programs that had a recurring cost due to uncertainty of funding; chose less expensive technology options and shorter warranties than planned; were forced to use resources outside of their district's schools to address students' mental health needs; and saw effects bleed into FY 2022, as district administrators did not receive notice until August of that year.

The second common refrain from those citing a negative impact was that the lack of tier funding in FY 2021 undermined the reliability of the funding and the sustainability of budgets under the funding formula. This uncertainty manifested in the challenges it posed to district administrators when thinking forward to long-term or future expenses, such as software licenses; concerns around the nature of overall funding after the ESSER/CARES funding subsided;
disbelief that Illinois can ever fully fund EBF and the general slowed progress to adequacy; and doubt among school boards and community members regarding the faithfulness of EBF funding.

Finally and conversely, some participants noted that they assumed the funding would continue after FY 2021 despite the lack of disbursed funding that year; they did not question the trajectory of EBF and were confident and hopeful that the governor and General Assembly would continue to work to fund the formula in future years.

Challenges to Progress

With these contextual pieces in mind, a discussion of the general challenges to progress can take place. These challenges are not necessarily directly related to the pandemic and/or the lack of tier funding in FY 2021 but should be considered as general commentary on the difficulties that complicated district and school progress since EBF began. Participants first discussed feeling guilt about extra spending when they had been on a tight budget for years. Several participants indicated that aligning spending decisions with the school board presented a challenge to implementing certain changes, while some educators noted a disconnect between teachers' suggestions for use of funds and the funding decisions of school administrators. One participant noted that EBF funding did not offset the impacts of declining enrollment. Another mentioned a change in student demographics - notably, an increase in their school's low-income population over the relevant time period - that put stress on the additional resources the school could provide.

Some participants, the majority of whom were district administrators or in combined principal/administrator roles, noted that districts continue to operate below adequacy because EBF is still not fully funded. Participants noted a cycle of continuously feeling that their district was digging out of a "hole," mentioning that an initial focus of EBF funds was simply to "break
even." Further, the pandemic has only increased how much money is required to adequately educate students and created new upheaval for districts whose finances had just begun to stabilize. Several participants also discussed how EBF barely covers the normal increases in the cost of materials and supplies. One participant noted that extra funding can go a long way in some areas but not others; a few thousand dollars, for instance, is enough to purchase a new curriculum but does not much improve an administrator's purchasing power when it comes to teacher salaries. Participants also noted past and current financial distress impacting improvement moving forward. Schools and districts may have had a history of needing to cut positions; reversing that trend with EBF funding requires effective communication with stakeholders who may be skeptical that additional staff can be afforded. Additionally, one participant noted that a high proportion of low-income families puts additional stress on a school system outside of ways typically expected; for instance, low-income families are less likely to have access to wireless internet, a necessity for learning during the pandemic.

Participants also noted a desire to maximize the impact of the limited funds they receive. Participants discussed general stress about using EBF funds in the most effective way possible to improve student outcomes. Staff salaries, instructional materials and curriculum, professional development, capital projects/physical facilities, social-emotional supports, technology, college and career programs, and supports for targeted student groups (e.g., English learners and special education students) were all listed as competing priorities. Staffing was also a primary concern among those who voiced challenges to progress after EBF implementation. Turnover among school administrators, teachers, and other school personnel, such as social workers, impacted a number of districts. Staff shortages across the state were noted to have exacerbated the issue, as some participants noted a new ability to fund certain positions using EBF money but an inability
to find qualified applicants. Participants also discussed general uncertainty about the future of EBF that prevented them from planning long term; they were unsure whether funding would continue, whether the state would return to a system of proration, and what the state legislature might enact in future sessions.

Overall Effects of EBF

Finally, with this context and the various challenges in mind, it is important to discuss the overall effects of EBF as described by educators, principals, and district administrators. Many participants reflected positively on EBF, stating that tier funding has "made a tremendous impact on our students and staff," that it has been better than any prior funding model, and that it has had a "great positive impact." One participant helpfully centered the ensuing discussion by issuing the reminder that "sometimes we think about the budget as putting numbers behind things, but there are actual kids and students that [EBF] supports."

In examining how EBF impacted past system imbalances, several district administrators stated that EBF funds allowed them to reverse historical inequities and address systemic issues of racism and marginalization of certain student and family groups. Additionally, EBF provided them with adequate funding to replace positions that had been cut, with the new staff members infusing new ideas into their school system. Several participants also cited improvements in district culture, as some spending was funneled into improving physical learning environments, and lack of financial stress allowed for administrators to exude more positivity.

EBF served two primary purposes in how district administrators handled present issues facing schools and districts. First, it provided predictability and financial stability. Administrators noted that it allowed for greater planning of long-term and recurring costs, such as curriculum, staffing, and technology licenses. They also cited that EBF's consistent funding
stream increased support from local school boards for various initiatives. Secondly, EBF left districts better prepared for the COVID-19 pandemic, as they had already used EBF funds to invest in special education teachers, guidance counselors, social workers, instructional coaches, and student access to technology prior to the onset of the pandemic.

Looking toward the future, EBF funding has allowed for long-term investments; district administrators have been more willing to begin programs that will require continued, sustained funding over a number of years knowing that EBF will continue to be funded.

In summary, the contextual factors at play since EBF was implemented five years ago have influenced how educators, school principals, and district administrators have viewed and experienced the effects of the new funding formula, and it will be important to continue considering extenuating circumstances outside the direct bounds of the formula in subsequent evaluations of EBF. It is also important to highlight that improved funding formulas that have made a discernable and oftentimes positive impression on educators themselves can still be met with challenges in both implementation at the state level and effectuation at the district level. This should not distract from the real positive outcomes created by the improved legislation, but rather should inform implementation moving forward.

Discussion

This evaluative study sought to examine the implementation of EBF since its passage in 2017. The findings in this study, both quantitative and qualitative, suggest that the EBF is working as intended per the legislation. RQ1 examined how EBF funds have been distributed through a variety of different lenses. Overall, EBF effectively targeted tier funding as intended, wherein funds were distributed to the most high-needs districts that are furthest from adequacy, districts with highest proportion of low-income students, and districts with the lowest average property wealth.

The PRP also was interested in exploring the impacts of EBF on student achievement via RQ2. At this point in time, it is not possible to determine a causal statement linking tier funding to student achievement due to the data limitations described extensively in the RQ2 section of this report along with the overlap of the pandemic. In exploring the available data regarding academic achievement and academic behavior rates, there are early signs that Tier 1 and Tier 2 districts (lower adequacy bands) showed improvements between the first two years of implementation (ISBE, 2021c), but those effects will be likely be impacted by the pandemic. Limited assessment participation prevents further analyses from being completed. Even absent the pandemic, researchers have shown that it can take anywhere between five to 10 years for the effects of a new policy to come to fruition (Abbott et al., 2109; Baron, 2019; Kreisman \& Steinberg, 2019, Rauscher, 2019). In addition, the pandemic and resulting federal relief funds received by school districts will make it difficult to associate EBF inputs directly with student outcomes in any meaningful way in future iterations of this report (Organisation for Economic Co-operation and Development, 2020; Azevedo et al., Reimers, 2022).

The qualitative component of the evaluative study included a mixed-method approach to understand how the field utilized EBF funds and general perceptions of their effect on schools. The first analysis examined how closely EBF cost factors represented district expenditures. The analysis of surveys, interviews, and focus groups showed that district largely used the funds in ways that aligned with the cost factors that are outlined in the EBF formula and corresponding research. Districts reported that they were left making difficult decisions on which investments to prioritize because they were still funded significantly below adequacy; a number of districts prioritized one cost factor over another based on the effect size of the investment.

The most common Core Investment made was to increase the number of instructional facilitators and core teachers. Gordon (2020) drew similar conclusions in his evaluation of EBF in Illinois, finding that the additional tier funding provided students and staff more opportunities and that school district priorities were aligned to the research-based methods embedded in the formula. Additionally, Gordon (2020) found that core teachers, professional development, and instructional materials were the most frequently cited investments, with core teachers making up the highest priority after the initial funds were distributed in FY 2018.

In exploring the systemic and organizational change elements that were used to improve student performance and close opportunity gaps, district administrators, principals, and educators often spoke about how the investment in educational inputs played a major role in improving instruction. For instance, staffing changes, including additions, increased consistency, and lower student-to-staff ratios, were seen as critical adjustments for improving student outcomes. In addition, improving instructional quality by investing in high-quality curricula, prioritizing professional development, and increasing access to technology were other academic inputs discussed. Biasi (2019) and Jackson et al. (2019) both discuss the impact of school finance
reforms and how increasing academic inputs like reductions in student-to-teacher ratios and increasing class time, stemming from increases in per pupil expenditures, can have long-term impacts on student achievement in both K-12 education and postsecondary outcomes.

The last set of analyses explored the overall effect of EBF on districts. Generally, the perceptions of district administrators, principals, and educators were overwhelmingly positive toward EBF. Many participants spoke about the direct impacts on school culture and student learning. At the same time, many participants spoke about the tension that persists since districts in the sample remain far from fully funded. District administrators especially emphasized that the continued investment in EBF is necessary to make the needed changes and improvements to their districts. One frequent challenge discussed was that districts are still having to choose between competing priorities (e.g., investing in core teachers or new technology) while dealing with the other contextual factors throughout the state (e.g., the educator shortage and declining student enrollment). The full intended impact of EBF cannot be determined since many districts remain below adequacy and the state is not fully funding the formula at present. Researchers who have studied other states' school finance reforms have showed that inadequate funding distributions can decrease the positive impacts of a school finance reform (Atchison, 2017; Darling-Hamond, 2019).

As districts considered the challenges associated with operating below full adequacy, they also discussed the hope that state leaders will be patient and continue to invest in EBF. Additional years of quantitative data, as well as continued recovery from the impacts of the pandemic, will be needed to adequately measure student academic and behavioral outcomes. As discussed previously, it can take years for a school finance reform effort to show impacts on both leading and lagging indicators (Abbott et al., 2109; Baron, 2019; Kreisman \& Steinberg, 2019,

Rauscher, 2019) and that the state will need to work to fully fund the formula (Ad Hoc Report, 2021d) to fully actualize the effects of the formula.

Per the legislation, another five-year evaluative study will need to be completed by 2027. The PRP will have to handle the onerous task of trying to differentiate the influence of EBF from the vast impacts of the pandemic on communities across the state, along with the influx of onetime federal funding that occurred as a result of the pandemic. It will likely be impossible to fully isolate how EBF has impacted student outcomes given the unprecedented times in which it was implemented. Any quantitative analysis of the formula will need to factor these extenuating circumstances into the methodology due to the fact that, even with improved data quality, the impacts of the pandemic will continue to be felt for years (Reimers, 2022). The proposed evaluative study should focus on the extent to which EBF funds have helped students and communities recover as well as how they have helped to improve student achievement broadly. It is advised that the PRP work in close collaboration with ISBE to ensure the proposed data elements and methodology will provide the robust analyses necessary to determine the full impacts of EBF on the state.

Conclusion

"Sometimes we think about the budget as putting numbers behind things, but there are actual kids and students that it supports." - District Administrator
"For lack of better words [this is] a poor rural area, which is where we are with a high proportion of low-income families...We looked at schoolwide and districtwide data and there was a clear consensus for sure, even being new to the building, that social, emotional learning and students' mental health was important even before COVID. That
was coming down the pipeline, so funds have been allocated through evidence-based funding to support that [including] hiring a social worker at the elementary." - Principal
"We had a district reading specialist come in and so that was a big piece of our money that we spent and she's still continuing to meet with our district. But I think that started around that time. That's what we used a bulk of our EBF money for at [this district] specifically because of our test scores. And then also we that's around the time where we started getting like 1 to 1 Chromebook student ratio, so I know a lot of that money was also spent on technology. We were able to allocate those in such a way that every kid in the school had one, which then set us up in a really good position for COVID." Educator

This evaluative study utilized a robust quantitative and qualitative analysis to show that the EBF formula is working as intended to address disparities in school funding across the state. EBF has shifted Illinois from being the most regressive school funding policy in the country (The Education Trust, 2018) to one that is distributing funds in an increasingly equitable way by providing additional tier funding to districts farthest from adequacy, districts with low property wealth, and districts with larger proportions of low-income students and students of color. District administrators, principals, and educators alike spoke of the profound impacts EBF has had on their schools, all the while reiterating the sentiment that more needs to be done to move their districts closer to adequacy. Although the study illuminated the positive impact of EBF, eight out of 10 students in Illinois remain under 90% adequacy (ISBE, 2021a). Thus, it is critical that state leaders continue to invest in EBF and work to fully fund the formula to bring all
districts to at least 90% adequacy and provide all students in the state with the high-quality education they deserve.

References

105 ILCS 5/18-8.05. (2017 \& rev. 2021). Evidence-based funding for student success for the 2017-2018 and subsequent school years. Illinois General Assembly. Retrieved June 30, 2021, from https://www.ilga.gov/legislation/ilcs/ilcs4.asp?DocName=010500050HArt\.+19\&ActI $\mathrm{D}=1005 \&$ ChapterID $=17 \&$ SeqStart $=134900000 \&$ SeqEnd=138900000

Abott, C., Kogan V., Lavertu, S., \& Peskowitz, Z. (2020). School district operational spending and student outcomes: Evidence from tax elections in seven states. (EdWorkingPaper: 20-25). Retrieved from Annenberg Institute at Brown University: https://doi.org/10.26300/mdtk-8743

Atchison, D. (2017, February 28). The impact of school finance reform on equity in the state of New York. American Institutes for Research. https://aefpweb.org/sites/default/files/webform/42/NY\ Equity\ Paper\ \ 1.28.17.pdf

Atchison, D., Levin, J. D., \& Butler, A. (2019). ESSA action guide. Using ESSA to improve the fairness of school funding. American Institutes for Research. $\underline{\text { https://www.air.org/sites/default/files/Using-ESSA-to-Improve-the-Fairness-of-School- }}$ Funding-April-2019-rev.pdf

Baker, B. D. (2018, July 17). How money matters for schools (School Finance Series). Learning Policy Institute. https://learningpolicyinstitute.org/product/how-money-matters-brief

Baker, B. D., Farrie, D., \& Sciarra, D. G. (2018, February). Is school funding fair? A national report card. Education Law Center. https://edlawcenter.org/assets/files/pdfs/publications/Is_School_Funding_Fair_7th_Editi. pdf

Baron, J. E. (2019). School spending and student outcomes: Evidence from revenue limit elections in Wisconsin. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3430766

Biasi, B. (2019). School finance equalization increases intergenerational mobility: Evidence from a simulated instruments approach (NBER Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w25600

Borman, G. D., \& Dowling, M. (2010). Schools and inequality: A multilevel analysis of Coleman's Equality of Educational Opportunity data. Teachers College Record, 112(5), 1201-1246. https://www.onemeck.org/wp-content/uploads/2016/03/BormanDowling_2010_Schools-and-inequality_TCR.pdf
Calkins, A., Guenther, W., Belfiore, G., Lash, D. (September 2010). Evaluating School Turnaround: Establishing benchmarks and metrics to assess school turnaround. Mass

Insight Education \& Research Institute. https://www.massinsight.org/wpcontent/uploads/2015/11/Evaluating_School_Turnaround.pdf.

Candelaria, C. A., \& Shores, K. A. (2019). Court-ordered finance reforms in the adequacy era: Heterogenous causal effects and sensitivity. Education Finance and Policy, 14(1), 31-60. https://doi.org/10.1162/edfp_a_00236

Card, D., \& Krueger, A. B. (1992). Does school quality matter? Returns to education and the characteristics of public schools in the United States. Journal of Political Economy, 100(1), 1-40. https://doi.org/10.1086/261805

Center on Budget and Policy Priorities. (2020, November 6). States grappling with hit to tax collections. Retrieved January 19, 2021, from https://www.cbpp.org/research/state-budget-and-tax/states-grappling-with-hit-to-tax-collections

Coleman, J. S., Campbell, E. Q., Hobson, C. J., McPartland, J., Mood, A. M., Weinfeld, F. D., \& York, R. L. (1966). Equality of educational opportunity: Summary report. U.S. Department of Health, Education, and Welfare; Office of Education. http://files.eric.ed.gov/fulltext/ED012275.pdf

Condron, D. J., \& Roscigno, V. J. (2003). Disparities within: Unequal spending and achievement in an urban school district. Sociology of Education, 76(1), 18-36. Retrieved from http://www.jstor.org/stable/3090259 (accessed August 18, 2016).

Darling-Hammond, L. (2019, August). Investing for student success: Lessons from state school finance reforms (School finance series) [Policy brief]. Learning Policy Institute. https://learningpolicyinstitute.org/sites/default/files/productfiles/Investing_Student_Succe ss_BRIEF.pdf

DiNapoli, M. A. (2020, July 17). Making school budgets whole and equitable during and after COVID-19 (Learning in the Time of COVID-19). Learning Policy Institute. https://learningpolicyinstitute.org/blog/covid-making-school-budgets-whole-andequitable

EdBuild. (2019). \$23 Billion. EdBuild. https://edbuild.org/content/23-billion/full-report.pdf
Gordon, S. (2020). The Illinois Evidence Based Funding Model: How are Tier I School Districts Spending New Money. [Doctoral dissertation]. Retrieved from https://www.proquest.com/openview/98972b97b2127db5191c530ab3921183/1.pdf?pq$\underline{\text { origsite }=\text { gscholar\&cbl }=18750 \& \text { diss }=y}$

Hanushek, E. A. (1989). The impact of differential expenditures on school performance. Educational Researcher, 18(4), 45-62. https://doi.org/10.3102/0013189X018004045

Hanushek, E. A. (1992). The trade-off between child quantity and quality. Journal of Political Economy, 100(1), 84-117. https://doi.org/10.1086/261808

Hanushek, E. A. (2003). The failure of input-based schooling policies. The Economic Journal, 113(485), F64-F98. https://doi.org/10.1111/1468-0297.00099

Henry, G. T., Fortner, C. K., \& Thompson, C. L. (2010). Targeted funding for educationally disadvantaged students: A regression discontinuity. Educational Evaluation and Policy Analysis, 32(2), 183-204. Retrieved from http://www. jstor.org/stable/40732417 (accessed January 12, 2016).

Houston, D. A. (2018). Public school funding and postsecondary outcomes in Illinois: What is reasonable to expect from Illinois' school funding report? (IERC 2018-1). Illinois Education Research Council. https://files.eric.ed.gov/fulltext/ED583122.pdf

Illinois State Board of Education. (2016.) General State Aid: An Introduction to the Basics [PowerPoint slides]. https://www.isbe.net/Documents/gsa-basics-pres.pdf

Illinois State Board of Education. (2017.) An Overview of the Evidence-Based Funding Formula [PowerPoint slides]. https://p18cdn4static.sharpschool.com/UserFiles/Servers/Server_266769/File/EBF_Prese ntation_Overview.pdf

Illinois State Board of Education. (n.d.) Evidence-Based Funding Basics: A Practical Guide for District Administrators [PowerPoint slides]. https://www.isbe.net/Documents/EBF-Basics-Fall-2020.pdf
Illinois State Board of Education. (2019, March 18). Proposal: Evaluative study research design. https://www.isbe.net/DocumentsPRP/Evaluative-Study-Research-Design.pdf

Illinois State Board of Education. (2020a). Evidence-based funding basics: A practical guide for district administrators [PowerPoint slides]. https://www.isbe.net/Documents/EBF-Basics-Fall-2020.pdf

Illinois State Board of Education. (2021). FY 2022 EBF at a glance [PowerPoint slides]. https://www.isbe.net/Documents/FY22-EBF-At-a-Glance.pdf

Illinois State Board of Education. (2020b). 2020 Illinois Report Card metrics affected by COVID-19. https://www.isbe.net/Documents/IL-Report-Card-vers-B.pdf

Illinois State Board of Education. (2020c, Feb 2). Learning Renewal Resource Guide [PowerPoint Slides]. https://www.isbe.net/Documents/LearningRenewal.pdf\#search=learning\ loss.

Illinois State Board of Education (2020d). Fall 2020 learning recommendations. https://www.isbe.net/Documents/Fall-2020-Learning-Rec.pdf\#search=learning\ loss

Illinois State Board of Education. (2021a). FY 2022 EBF at a glance [PowerPoint slides]. https://www.isbe.net/Documents/FY22-EBF-At-a-Glance.pdf

Illinois State Board of Education. (2021b, May 11). Revised proposal: Evaluative study research design: Research questions. https://www.isbe.net/DocumentsPRP/EBF-Evaluative-Study-Revised-Research-Questions.pdf

Illinois State Board of Education. (2021c). Illinois' Evidence-Based Funding Formula and student a chievement. https://www.isbe.net/DocumentsPRP/Y1-White-Paper.pdf

Illinois State Board of Education. (2021d). Professional review panel Ad Hoc Committee report pursuant to PA 101-0654. https://www.isbe.net/DocumentsPRP/Ad-Hoc-Comm-DraftReport.pdf

Illinois State Board of Education. (n.d.) Evidence-Based Funding Basics: A Practical Guide for District Administrators [PowerPoint slides]. https://www.isbe.net/Documents/EBF-Basics-Fall-2020.pdfKreisman, D. \& Steinberg, M. P. (2019). The effect of increased funding on student achievement: Evidence from Texas' Small District Adjustment (EdWorkingPaper No.19-58). Retrieved from Annenberg Institute at Brown University: http://edworkingpapers.com/ai19-58.

Jackson, C. K., Rucker, C. J., \& Persico, C. (2015). The effects of school spending on education and economic outcomes: Evidence from school finance reforms (NBER Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w20847.

Martin, C., Boser, U., Benner, M., \& Baffour, P. (2018, November 13). A quality approach to school funding: Lessons learned from school finance litigation. Center for American Progress. https://www.americanprogress.org/issues/education-k-12/reports/2018/11/13/460397/quality-approach-school-funding/

McFarland, J., Hussar, B., de Brey, C., Snyder, T., Wang, X., Wilkinson-Flicker, S., Gebrekristos, S., Zhang, J., Rathbun, A., Barmer, A., Mann, F. B., \& Hinz, S. (2017, May). The condition of education 2017 (NCES 2017-144). U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics. https://nces.ed.gov/pubs2017/2017144.pdf

Odden, A. R., Goetz, M. E., \& Picus, L. O. (2008). Using available evidence to estimate the cost of educational adequacy. Education Finance and Policy, 3(3), 374-397. http://www.mitpressjournals.org/doi/pdf/10.1162/edfp.2008.3.3.374

Odden, A. R., Picus, L. O., \& Fermanich, M. (2003, September). An evidence-based approach to school finance adequacy in Arkansas. Picus, Odden \& Associates. http://picusodden.com/wp-content/uploads/2013/09/AR_2003_EB_Report.pdf

Odden, A. R., Picus, L. O., \& Goetz, M. E. (2010). A 50-state strategy to achieve school finance adequacy. Educational Policy, 24(4), 628-654. https://doi.org/10.1177/0895904809335107

Organisation for Economic Co-Operation and Development. (2008, January). Ten steps to equity in education [Policy brief]. https://www.oecd.org/education/school/39989494.pdf

Organisation for Economic Co-operation and Development. (2020). Education and COVID-19: Focusing on the long-term impact of school closures. https://www.oecd.org/coronavirus/policy-responses/education-and-covid-19-focusing-on-the-long-term-impact-of-school-closures-2cea926e/

Picus Odden \& Associates. (n.d.) State Studies. http://picusodden.com/state-studies/
Public Act 100-0465. (2017). Evidence-Based Funding for Student Success Act. Illinois General Assembly. Retrieved July 7, 2021, from https://www.ilga.gov/legislation/publicacts/100/PDF/100-0465.pdf

Rauscher, E. (2019). Delayed benefits: Effects of California school district bond elections on achievement by socioeconomic status (EdWorkingPaper No.19-18). Retrieved from Annenberg Institute at Brown University: http://edworkingpapers.com/ai19-18

Reimers, F. M. (2022). Learning from a pandemic. The impact of COVID-19 on education around the world. In Primary and secondary education during COVID-19 (pp. 421-460). Springer, Cham.

Rothstein, J., Lafortune, J., \& Schanzenbach, D. W. (2016, March 16). Can school finance reforms improve student achievement? Washington Center for Equitable Growth. https://equitablegrowth.org/wp-content/uploads/2016/03/031616-rothstein-schoolfin1.pdf

Rivkin, S. G., Hanushek, E. A., \& Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417-458. http://www.jstor.org/stable/3598793

Rothbart, M. W. (2020). Does school finance reform reduce the race gap in school funding? Education Finance and Policy, 15(4), 675-707. https://doi.org/10.1162/edfp_a_00282

Roza, M. (2020, April 9). How the coronavirus shutdown will affect school district revenues (Brown Center Chalkboard). Brookings Institute. Retrieved January 19, 2021, from https://www.brookings.edu/blog/brown-center-chalkboard/2020/04/09/how-the-coronavirus-shutdown-will-affect-school-district-revenues/

Snyder, T. D., de Brey, C., \& Dillow, S. A. (2016, December). Digest of education statistics 2015 (NCES 2016-014). U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics. https://nces.ed.gov/pubs2016/2016014.pdf

Streich, F., Pan, J., Ye, C., \& Xia, J. (2021). Estimating changes to student learning in Illinois following extended school building closures due to the COVID-19 pandemic (REL 2022131). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Midwest.

Appendix A

FY 2022 Evidence-Based Funding Cost Factors ${ }^{35}$

Core Investment Cost Factors	Ratios and Percentages Used for Calculations
1. Core Teachers	K-3rd LI 15:1, Non-LI 20:1; 4th-12th LI 20:1, NonLI 25:1
2. Specialist Teachers	$\%$ of Core $=$ E 20%, M 20%, HS 33%
3. Instructional Facilitators	$\mathrm{E} / \mathrm{M} / \mathrm{HS}=200: 1$
4. Core Intervention Teachers	$E / M=450: 1, H S=600: 1$
5. Guidance Counselor	$\mathrm{E}=450: 1, \mathrm{M} / \mathrm{HS}=250: 1$
6. School Site Staff	$\mathrm{E} / \mathrm{M}=225: 1, \mathrm{HS}=200: 1$
7. Nurse	$\mathrm{E} / \mathrm{M} / \mathrm{HS}=750: 1$
8. Supervisory Aide	$E / \mathrm{M}=225: 1, \mathrm{HS}=200: 1$
9. Librarian	$\mathrm{E} / \mathrm{M}=450: 1, \mathrm{HS}=600: 1$
10. Librarian Aide/Media Tech	$\mathrm{E} / \mathrm{M} / \mathrm{HS}=300: 1$
11. Principal \& Assistant Principal	$\mathrm{E} / \mathrm{M}=450: 1, \mathrm{HS}=600: 1$
12. Substitute Teachers	Average Daily Salary x 5.7% of 176 school days x FTE
Per Student Investment Cost Factors	Per Student Investment Costs Used for Calculations
13. Gifted	E/M/HS = \$90/student
14. Professional Development	$\mathrm{E} / \mathrm{M} / \mathrm{HS}=\$ 125 /$ student
15. Instructional Material	E/M/HS $=$ \$247/student
16. Assessments	E/M/HS $=$ \$28/student
17. Computer/Tech Equipment	$\mathrm{E} / \mathrm{M} / \mathrm{HS}=\$ 285.5 /$ student $=\$ 571 /$ student if Tier 1 or Tier 2 in prior year
18. Student Activities	$\mathrm{E}=\$ 113, \mathrm{M}=\$ 226, \mathrm{HS}=\$ 779 /$ student
19. Operations \& Maintenance	E/M/HS $=$ \$1,094/student
20. Central Office	$\mathrm{E} / \mathrm{M} / \mathrm{HS}=\$ 883 /$ student
21. Employee Benefits (\% of Salary)	E/M/HS = 30\%
22. Employee Benefits (Central Office, Maintenance \& Operations, and Normal Pension Costs)	$\mathrm{CO}=\$ 472.18, \mathrm{M} \& \mathrm{O}=\$ 378.30 /$ student

[^26]
Evidence-Based Funding Cost Factors

Additional Investment Cost Factors	Additional Investment Ratios
Low-Income (Uses Low-Income Count)	
23. Intervention Teacher	$125: 1$
24. Pupil Support	$125: 1$
25. Extended Day Teacher	$120: 1$
26. Summer School teacher	$120: 1$
English Learner (Uses English Learner Count)	
27. Intervention Teacher	$125: 1$
28. Pupil Support	$125: 1$
29. Extended Day Teacher	$120: 1$
30. Summer School Teacher	$120: 1$
31. English Learner Core Teacher	$100: 1$
Special Education (Uses Average Student Enrollment)	
32. Special Education Teacher	$141: 1$
33. Instructional Assistant	$141: 1$
34. Psychologist	$1000: 1$

Appendix B

Table 1

Amount of new tier funding allocated to all school districts and ROEs/Safe Schools/Alternative Schools for FY 2020 and FY 2022

	2020					2022				
Percent Adequacy	School Districts (no ROEs, Safe/Alt Schools)		ROEs, Safe/Alt Schools		All Org Units	School Districts (no ROEs, Safe/Alt Schools)		ROEs, Safe/Alt Schools		All Org Units
	Tier Funding of Adequacy Band	\% of Total Tier Funding of Adequacy Band	Tier Funding of Adequacy Band	\% of Total Tier Funding of Adequacy Band	Total Tier Funding of Adequacy Band	Tier Funding of Adequacy Band	\% of Total Tier Funding of Adequacy Band	Tier Funding of Adequacy Band	\% of Total Tier Funding of Adequacy Band	
>100\%	\$ 312,344.47	99.95\%	\$ 146.37	0.05\%	\$ 312,490.84	\$ 299,356.81	99.79\%	\$ 642.35	0.21\%	\$ 299,999.16
$\begin{aligned} & \text { 90\%- } \\ & 99.99 \% \end{aligned}$	\$ 2,811,012.42	99.95\%	\$ 1,411.64	0.05\%	\$ 2,812,424.06	\$ 2,699,999.68	100.00\%	-	-	\$ 2,699,999.68
$\begin{aligned} & \text { 80\%- } \\ & 89.99 \% \end{aligned}$	\$ 5,037,767.90	99.88\%	\$ 5,804.36	0.12\%	\$ 5,043,572.26	\$ 4,779,093.40	99.95\%	\$ 2,595.29	0.05\%	\$ 4,781,688.69
$\begin{aligned} & \text { 70\%- } \\ & 79.99 \% \end{aligned}$	\$ 14,495,409.31	99.78\%	\$ 32,308.09	0.22\%	\$ 14,527,717.40	\$ 23,232,940.64	99.91\%	\$ 20,484.90	0.09\%	\$ 23,253,425.54
$\begin{aligned} & \text { 60\%- } \\ & 69.99 \% \end{aligned}$	\$ 234,880,095.39	99.80\%	\$ 460,831.74	0.20\%	\$ 235,340,927.13	\$ 254,895,522.58	99.82\%	\$ 457,452.41	0.18\%	\$ 255,352,974.99
<60.00\%	\$ 50,660,806.25	92.25\%	\$ 4,254,475.16	7.75\%	\$ 54,915,281.41	\$ 8,458,493.54	60.31\%	\$ 5,567,476.87	39.69\%	\$ 14,025,970.41

Note. CPS accounted for 27.3% of the total new tier funding in the $60-60.99 \%$ adequacy band in FY 20 and 32.8% in FY 22 .CPS accounted for $33-$ 35% of the total student enrollment in the 60-69.99\% adequacy band.

Table 1 highlights the relative amount of tier funding disbursed to school districts and to ROEs, Safe Schools, and Alternative Schools. The latter group accounts for a miniscule percent of the total tier funding disbursed each year for organizational units achieving more than 60% adequacy (consistently accounting for no more than 0.22% of the total new tier funding for any given adequacy band for the two years in which ROEs, Safe Schools, and Alternative Schools have received funding under EBF). In looking at organizational units with less than 60% adequacy, ROEs, Safe Schools, and Alternative Schools account for a small but sizeable proportion of the new tier funding for $2020(7.75 \%)$ and a significant portion of the new tier funding for 2022 (39.69\%).

Appendix C

Table 2
Tier Funding by Tier and Race/Ethnicity for SY 2018-19

	TIER 1			TIER 2		
	Total Funds	Total Students	Per Pupil	Total Funds	Total Students	Per Pupil
Race/Ethnicity						
American Indian or Alaska Native	\$837,084.73	2,748.25	\$304.59	\$61,560.06	1,158.25	\$53.15
Asian	\$7,045,548.60	29,097.75	\$242.13	\$1,191,216.55	31,083.75	\$38.32
Black or African	\$56,403,394.11	237,501.50	\$237.49	\$5,020,616.29	65,019.25	\$77.22
American						
Hispanic or Latino	\$109,473,284.00	360,932.75	\$303.31	\$4,709,645.22	83,701.50	\$56.27
Native Hawaiian or Other Pacific Islander	\$263,073.39	1,089.50	\$241.46	\$27,953.48	504.75	\$55.38
Two or More Races	\$9,225,454.26	32,333.50	\$285.32	\$1,307,222.84	24,806.00	\$52.70
White	\$84,179,086.66	323,073.50	\$260.56	\$17,278,713.88	344,674.00	\$50.13
	TIER 3				TIER 4	
	Total Funds	Total Students	Per Pupil	Total Funds	Total Students	Per Pupil
Race/Ethnicity						
American Indian or Alaska Native	\$8,097.52	316.75	\$25.56	\$609.86	513.50	\$1.19
Asian	\$206,403.40	8,520.00	\$24.23	\$34,725.42	29,256.75	\$1.19
Black or African American	\$100,810.02	4,116.50	\$24.49	\$14,410.86	11,671.50	\$1.23
Hispanic or Latino	\$532,964.64	21,008.25	\$25.37	\$46,870.37	38,053.00	\$1.23
Native Hawaiian or Other Pacific Islander	\$3,090.08	128.00	\$24.14	\$337.91	283.75	\$1.19
Two or More Races	\$83,494.34	3,512.50	\$23.77	\$12,577.16	10,660.25	\$1.18
White	\$1,765,340.98	75,221.00	\$23.47	\$190,490.07	163,298.75	\$1.17

	TIER 1 (Without CPS)			CPS		
	Total Funds	Total Students	Per Pupil	Total Funds	Total Students	Per Pupil
Race/Ethnicity						
American Indian or Alaska Native	\$685,238.42	1,755.50	\$390.34	\$151,600.50	992.75	\$152.71
Asian	\$4,841,354.98	14,666.25	\$330.10	\$2,203,947.81	14,431.50	\$152.72
Black or African American	\$36,384,001.12	106,416.25	\$341.90	\$20,019,147.19	131,085.25	\$152.72
Hispanic or Latino	\$84,227,592.67	195,625.75	\$430.55	\$25,245,445.52	165,307.00	\$152.72
Native Hawaiian or Other Pacific Islander	\$169,985.57	481.50	\$353.03	\$92,842.01	608.00	\$152.70
Two or More Races	\$8,399,507.98	26,926.75	\$311.94	\$825,700.47	5,406.75	\$152.72
White	\$78,574,345.77	286,375.25	\$274.38	\$5,604,495.08	36,698.25	\$152.72

Table 3
Tier funding by Tier and Race/Ethnicity for SY 2019-20

	Total Funds	TIER 1 Total Students	Per Pupil	Total Funds	TIER 2 Total Students	Per Pupil
Race/Ethnicity						
American Indian or Alaska Native	\$837,505.97	2,701.50	\$310.02	\$66,975.79	1,155.00	\$57.99
Asian	\$7,639,693.84	29,549.55	\$258.54	\$1,390,788.76	31,446.90	\$44.23
Black or African American	\$58,116,669.96	239,562.30	\$242.60	\$5,182,118.75	62,105.00	\$83.44
Hispanic or Latino	\$108,224,612.00	365,009.90	\$296.50	\$4,838,279.24	80,918.10	\$59.79
Native Hawaiian or Other Pacific Islander	\$285,553.06	1,118.25	\$255.36	\$25,087.29	442.25	\$56.73
Two or More Races	\$9,591,823.03	33,918.70	\$282.79	\$1,282,208.61	23,035.20	\$55.66
White	\$90,163,915.98	343,239.30	\$262.69	\$16,968,014.47	318,289.15	\$53.31
	TIER 3			TIER 4		
	Total Funds	Total Students	Per Pupil	Total Funds	Total Students	Per Pupil
Race/Ethnicity						
American Indian or Alaska Native	\$8,254.48	261.25	\$31.60	\$640.62	526.75	\$1.22
Asian	\$226,824.00	7,599.25	\$29.85	\$36,691.79	30,383.65	\$1.21
Black or African American	\$115,895.37	3,797.00	\$30.52	\$14,439.13	11,510.25	\$1.25
Hispanic or Latino	\$534,297.87	17,050.70	\$31.34	\$52,507.54	41,617.70	\$1.26
Native Hawaiian or Other Pacific Islander	\$3,614.07	123.75	\$29.20	\$328.85	269.50	\$1.22
Two or More Races	\$86,793.04	2,980.50	\$29.12	\$12,088.12	10,108.00	\$1.20
White	\$1,835,333.58	64,522.25	\$28.44	\$195,648.40	164,670.15	\$1.19

	TIER 1 (Without CPS)			CPS		
	Total Funds	Total Students	Per Pupil	Total Funds	Total Students	Per Pupil
Race/Ethnicity						
American Indian or Alaska Native	\$658,838.20	1,712.00	\$384.84	\$178,667.77	989.50	\$180.56
Asian	\$5,009,603.17	14,983.55	\$334.34	\$2,630,090.67	14,566.00	\$180.56
Black or African American	\$34,362,794.61	108,008.30	\$318.15	\$23,753,875.35	131,554.00	\$180.56
Hispanic or Latino	\$78,459,590.93	200,164.90	\$391.97	\$29,765,021.07	164,845.00	\$180.56
Native Hawaiian or Other Pacific Islander	\$181,277.53	540.75	\$335.23	\$104,275.53	577.50	\$180.56
Two or More Races	\$8,537,872.79	28,081.70	\$304.04	\$1,053,950.24	5,837.00	\$180.56
White	\$83,389,166.42	305,719.30	\$272.76	\$6,774,749.56	37,520.00	\$180.56

Appendix D

3-Year Trends of Assessment Enrollment and Participation

Table 4

SAT ELA Test Enrollment by Year and Tier

	TIER 1					TIER 2				
	SY 2018 Enrollment	$\text { SY } 20$ Enrollment	19 \% Change 18-19	SY 2021 Enrollment	\% Change 19-21	SY 2018 Enrollment	SY 2019	19 \% Change 18-19	SY 2021 Enrollment	21 \% Change 19-21
All Students	70504	74117	105.1	77308	104.3	41233	36287	88.0	37298	102.8
Targeted Groups										
English Learner	4,376	5,312	121.4	6,352	119.6	1,014	918	90.5	1,101	119.9
IEP	8,764	9,448	107.8	10,582	112.0	4,574	4,178	91.3	4,582	109.7
Low Income	44,299	44,108	99.6	44,837	101.7	12,989	11,404	87.8	11,821	103.7
Race/Ethnicity										
White	23,727	25,878	109.1	26,161	101.1	27,460	24,355	88.7	24,237	99.5
Black	18,364	17,969	97.8	17,932	99.8	3,950	3,948	99.9	4,021	101.8
Hispanic or Latino	24,185	25,676	106.2	28,149	109.6	6,692	5,241	78.3	5,942	113.4
Asian	2,096	2,210	105.4	2,417	109.4	1,591	1,386	87.1	1,616	116.6
Pacific Islander	69	93	134.8	82	88.2	55	34	61.8	29	85.3
American Indian	201	229	113.9	181	79.0	90	80	88.9	57	71.3
Two or more Races	1,862	2,062	110.7	2,386	115.7	1,395	1,243	89.1	1,396	112.3
	TIER 3					TIER 4				
	SY 2018	SY 20		SY 2		SY 2018	SY 20		SY 20	
			\%		\%			\%		\%
			Change		Change			Change		Change
	Enrollment	Enrollment	18-19	Enrollment	19-21	Enrollment	Enrollment	18-19	Enrollment	19-21
All Students	6,773	8738	129.0	9106	104.2	27638	25638	92.8	27061	105.6
Targeted Groups										
English Learner	193	430	222.8	517	120.2	917	951	103.7	1,180	124.1
IEP	675	974	144.3	1,108	113.8	2,817	2,658	94.4	2,999	112.8
Low Income	1,673	2,421	144.7	2,663	110.0	5,911	5,122	86.7	5,505	107.5
Race/Ethnicity										
White	4,498	5,494	122.1	5,517	100.4	17,471	16,058	91.9	16,542	103.0
Black	395	445	112.7	436	98.0	1,244	1,162	93.4	1,237	106.5
Hispanic or Latino	1,157	1,932	167.0	2,176	112.6	4,927	4,380	88.9	4,952	113.1
Asian	524	595	113.5	669	112.4	3,106	3,089	99.5	3,438	111.3
Pacific Islander	2	8	400.0	7	87.5	32	25	78.1	28	112.0
American Indian	11	28	254.5	18	64.3	58	48	82.8	48	100.0
Two or more Races	186	236	126.9	283	119.9	800	876	109.5	816	93.2

Table 5

SAT ELA Test Participation Rate by Tier and Year

		Tier 1		Tier 2					Tier 3	Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	97.1	96.4	87.1	98.3	98.3	91.2	98.8	98.6	95.8	99.3	99	96.4
Targeted Groups												
English Learners	96	95.1	80.9	94.9	95.4	78.9	97.4	97.9	87	98.8	97.4	89.7
IEP	94.9	94	79.9	96	96.1	84	96.3	96.2	90.3	97.5	96.8	90.5
Low Income	96.3	95.3	83.3	96.9	96.9	84.2	97.9	97.8	92.7	98.6	98	92.8
Race/Ethnicity												
White	98.3	98.1	92.5	98.9	99	94.5	99	99	97	99.4	99.2	97.5
Black	95.3	93.5	78.4	95.1	95	78.4	99.2	96.4	93.8	98.1	97.4	90.2
Hispanic or Latino	97.1	96.5	87.2	97.5	97.4	86.5	97.8	98	92.3	98.9	98.2	93.6
Asian	99.3	98.3	96.2	99.6	99.6	95.7	99	99	98.1	99.7	99.5	97.8
Pacific Islander	100	97.8	86.6	96.4	91.2	86.2	100	100	100	96.9	100	100
American Indian	96.5	93.4	84.5	98.9	96.3	82.5	90.9	92.9	94.4	100	100	95.8
Two or more races	96.6	96.8	84.6	97.7	97.1	86.6	99.5	98.7	97.5	99.5	99.1	95.1

Table 6

SAT Math Test Enrollment by Year and Tier

	TIER 1					TIER 2				
	SY 2018	$\text { SY } 2019$		SY 2021		SY 2018	SY 2019		SY 2021	
	Enrollment	Enrollment	$\begin{gathered} \% \\ \text { Change } \\ 18-19 \\ \hline \end{gathered}$	Enrollment	$\begin{gathered} \text { \% } \\ \text { Change } \\ \text { from } \\ 19-21 \end{gathered}$	Enrollment	Enrollment	$\begin{gathered} \% \\ \text { Change } \end{gathered}$	Enrollment	\% Change from 19-21
All Students	70,661	74,117	104.9	77,308	104.3	41,290	36,286	87.9	37,298	102.8
Targeted Groups										
English Learner	4,532	5,312	117.2	6,352	119.6	1,071	918	85.7	1,101	119.9
IEP	8,765	9,448	107.8	10,582	112.0	4,575	4,178	91.3	4,582	109.7
Low Income	44,412	44,108	99.3	44,837	101.7	13,019	11,404	87.6	11,821	103.7
Race/Ethnicity										
White	23,745	25,878	109.0	26,161	101.1	27,477	24,354	88.6	24,237	99.5
Black	18,391	17,969	97.7	17,932	99.8	3,958	3,948	99.7	4,021	101.8
Hispanic or Latino	24,260	25,676	105.8	28,149	109.6	6,712	5,241	78.1	5,942	113.4
Asian	2,126	2,210	104.0	2,417	109.4	1,603	1,386	86.5	1,616	116.6
Pacific Islander	70	93	132.9	82	88.2	55	34	61.8	29	85.3
American Indian	202	229	113.4	181	79.0	90	80	88.9	57	71.3
Two or more Races	1,867	2,062	110.4	2,386	115.7	1,395	1,243	89.1	1,396	112.3
	TIER 3					TIER 4				
	SY 2018	SY 20		SY 202		SY 2018	SY 20		SY 20	
					\%					\%
			\%		Change			\%		Change
			Change		from			Change		from
	Enrollment	Enrollment	18-19	Enrollment	19-21	Enrollment	Enrollment	18-19	Enrollment	2019
All Students	6,787	8,738	128.7	9,106	104.2	27,694	25,639	92.6	27,061	105.5
Targeted Groups										
English Learner	207	430	207.7	517	120.2	973	951	97.7	1,180	124.1
IEP	675	974	144.3	1,108	113.8	2,817	2,659	94.4	2,999	112.8
Low Income	1,677	2,421	144.4	2,663	110.0	5,940	5,122	86.2	5,505	107.5
Race/Ethnicity										
White	4,502	5,494	122.0	5,517	100.4	17,491	16,059	91.8	16,542	103.0
Black	397	445	112.1	436	98.0	1,248	1,162	93.1	1,237	106.5
Hispanic or Latino	1,164	1,932	166.0	2,176	112.6	4,939	4,380	88.7	4,952	113.1
Asian	525	595	113.3	669	112.4	3,125	3,089	98.8	3,438	111.3
Pacific Islander	2	8	400.0	7	87.5	32	25	78.1	28	112.0
American Indian	11	28	254.5	18	64.3	58	48	82.8	48	100.0
Two or more Races	186	236	126.9	283	119.9	801	876	109.4	816	93.2

Table 7

SAT Math Test Participation Rate by Tier and Year

		Tier 1					Tier 3	Tier 4				
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	97.6	98.4	60.1	98.8	99.2	73.8	98	98.9	79.2	98.1	98.6	77.2
Targeted Groups												
English Learners	98.5	99	50.6	99.5	99.6	61.6	99.4	99.4	70	99.3	99.4	68.2
IEP	96.7	97.3	59.5	98.1	98.3	72.3	96.3	97.5	76.3	96.6	96.9	74.4
Low Income	97.8	98.6	54.5	99	99.3	66.6	98.2	99.1	69.4	98.9	98.8	66.8
Race/Ethnicity												
White	97.8	98.5	80.1	98.6	99.1	82.7	97.7	98.8	84.3	97.8	98.5	81.9
Black	96.7	97.9	50.3	98.8	99.1	54.1	97.3	99.2	66	98.9	97.5	60.5
Hispanic or Latino	97.9	98.6	49.4	99.3	99.4	62.1	98.9	99.2	66.5	98.7	99	69.1
Asian	97.7	98.7	59.3	99.4	99.7	62.5	99.2	99.2	72.2	99.4	99.5	68.5
Pacific Islander	95.8	97	57.6	99.1	99.6	69.2	98.6	100	76.2	98.9	99	66.4
American Indian	97.5	98.4	50.7	98.3	99.2	63.6	98.9	98	62	97.7	99.5	66
Two or more races	97.3	98.1	66.7	98.3	98.9	69.2	96.6	98.5	75.8	98.2	98.3	75

Appendix E

Academic Achievement Indicators

Table 8
Student Proficiency Rates by Tier and Student Groups in ELA State Assessments

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	27.3	28.5	22.0	40.1	41.3	33.1	49.0	49.6	40.7	58.0	58.4	49.8
Targeted Groups												
English Learners	9.8	8.9	3.9	10.4	10.7	5.8	15.2	11.7	7.2	18	16.5	10.4
IEP	5.7	6.0	4.6	9.7	9.6	7.4	14.0	14.4	11	19.2	20.3	15.1
Low Income	20.4	21	13.9	23.7	24.3	17	27.7	28.4	20.6	32.4	31.9	23.5
Race/Ethnicity												
White	38.5	40.1	30.9	45.3	46.5	36.7	54.6	54.4	44.7	61.4	62.4	52.8
Black	16.1	17.0	10.6	19.0	17.9	12.2	26.0	26.2	19.7	30.0	28.1	21.7
Hispanic or Latino	22.6	23.4	15.7	26.5	29.1	21.2	31.2	29.5	22.7	36.3	37.3	28.9
Asian	55.3	55.1	46.2	65.8	68.2	58.5	68.5	62.4	50.4	73.4	73.4	67.4
Pacific Islander	45.6	49.0	36.1	39.6	40.3	33.3	43.8	42.3	39.7	54.2	45.9	41
American Indian	23.9	26.5	20.2	34.7	33.8	26	34.9	29.2	28.6	44.7	46.5	40.9
Two or more races	31.5	32.3	24.7	38.8	39.1	30.3	55.6	57.3	45.8	62.8	62.4	54.6

Table 9
Student Proficiency Rates by Tier and Student Groups in Math State Assessments

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	21.7	23	16.6	35.3	35.6	28.3	43	44.2	36.5	53.8	54	46.1
Targeted Groups												
English Learners	9.2	9.7	3.6	12.8	12.6	7.3	15	12.9	7.9	20.9	18.9	11.5
IEP	4.8	5.3	4.3	8.6	9.2	7.4	12.6	13.8	11.1	17.5	18.7	15.2
Low Income	15.4	16.1	9.1	18.6	18.1	11.8	20.6	22	16.1	26.4	25.3	18.4
Race/Ethnicity												
White	31.6	33.1	24.4	40.4	40.5	31.6	49.2	49.3	40.3	57.3	57.9	52.8
Black	10.3	11.3	5.7	12.9	11.7	6.5	17.3	18	14.2	21.6	19.5	21.7
Hispanic or Latino	17.9	18.9	10.5	21.4	22.3	15	23.1	21.9	16.4	29.7	30	28.9
Asian	55.7	57.4	47.6	68.1	70.9	62.7	65.7	62	53.3	73.1	74.5	67.4
Pacific Islander	40.2	41.8	28.3	39.4	35.2	27.6	34.2	32.4	30.9	56.7	52	38.2
American Indian	19.1	20.4	15.1	28.2	28.7	19	25.4	24.9	24.5	39.6	40.6	36.9
Two or more races	24.3	24.6	17.7	32.7	33	24.7	48.9	50.8	42	58.1	58.7	51.5

Table 10

Student Proficiency Rates by Adequacy Band and Student Groups in ELA State Assessments

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	27.4	27	21.4	23.6	26.6	20.2	33.9	32.5	24.9	39.6	43.2	34.6	45.4	43.4	34.8	49	49.9	41.5	58	58.4	49.8
Targeted Groups																					
English Learner	12.4	9.9	3.6	6.8	7.9	3.9	10.1	8.9	4.4	10.1	11.3	6.2	11.3	10.8	5.3	15.2	11.9	7.7	18	16.5	10.4
IEP	4.6	4.8	4.1	5.5	5.6	4.3	8.1	7.5	5.4	9.4	10	7.6	11.1	10.9	9	14	14.5	11.3	19.2	20.3	15.1
Low Income	21.9	21.1	13.7	18.3	20.8	13.9	21.5	21.6	14.6	24.4	25.4	18.3	24.9	25.3	17.3	27.7	28.4	20.7	32.4	31.9	23.5
Race/Ethnicity																					
White	58	57	48.6	32.9	39.7	31.1	40.8	39.9	30.3	44	46.4	36.9	50.2	48.6	38.3	54.6	54.4	45.2	61.4	62.4	52.8
Black	17.4	17.3	10.7	14.8	17.6	11.8	16.1	16.1	9.9	18.2	18.7	13.1	21	22.4	16	26	26.4	20	30	28.1	21.7
Hispanic or Latino	25.9	25.1	17.4	18	20.4	13.3	25.8	25.2	17	27.4	29	21.2	26	28.9	21.7	31.2	29.6	22.9	36.3	37.3	28.9
Asian	57.1	54.4	49.4	47.9	53.2	41.8	60.3	58.2	46.9	58.2	69.2	58.6	68.7	67.5	56.9	68.5	64.3	53.8	73.4	73.4	67.4
Pacific Islander	55.3	56.1	50	25.2	36.7	19.8	40.9	36.9	25.2	31.3	43.3	42.9	44.4	46.4	22.5	43.8	42.3	38.7	54.2	45.9	41
American Indian	31.1	29.8	28	16.7	20.4	14.5	34.5	29.7	17.6	26.4	37.5	34.2	39.8	31	23.9	34.9	30	28.7	44.7	46.5	40.9
Two or more Races	54.4	54.6	50.1	25.5	31.7	24.5	32.9	30.8	22.1	36.2	38.5	30.3	45.7	42.8	33.7	55.6	56.8	45.8	62.8	62.4	54.6

Table 11

Student Proficiency Rates by Adequacy Band and Student Groups in Math State Assessments

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	22.4	23.8	17.4	18.4	20.8	14.6	27.4	25.3	18.6	34.6	37.9	30.1	42.2	38.9	31.4	43	44.7	37.3	53.8	54	46.1
Targeted Groups																					
English Learner	10.5	10.9	3.7	7.3	9.3	3.6	10.9	9	3.5	10.8	13.7	8.7	14.8	12.8	7.3	15	13.2	8.7	20.9	18.9	11.5
IEP	4.2	4.6	3.9	4.3	5	4.1	6.8	6.5	5	8.2	9.5	7.6	10.7	11.3	9.4	12.6	14	11.3	17.5	18.7	15.2
Low Income	17.4	18.2	9.8	13.5	15.3	8.9	15.7	14.8	8.9	18.7	19.4	12.9	20.4	19.1	13	20.6	22	16.3	26.4	25.3	18.4
Race/Ethnicity																					
White	52	54.2	45.2	26.3	32.8	24.1	34	32.1	23.7	39	40.7	31.9	46.8	44.4	35	49.2	49.4	40.7	57.3	57.9	48.7
Black	11.9	12.8	6.4	8.3	9.8	5.2	10	9.8	4.9	13.2	12.2	7.4	13.8	14.3	9.3	17.3	18.1	14.4	21.6	19.5	15.4
Hispanic or Latino	20.9	21.9	12.5	14.3	15.8	8.8	19.8	18.5	10.6	21.8	21.5	15.4	20.7	22.8	16.2	23.1	22.1	16.6	29.7	30	22.5
Asian	59.6	61.2	54.5	48.8	53.6	43.9	56.9	55.4	43.7	58	73.1	63.9	72.8	69.7	61	65.7	64.1	56.7	73.1	74.5	69.6
Pacific Islander	47.9	51.5	41.4	24	19.4	15.1	35.6	31.8	17.9	35.8	37.8	30.6	48.2	39.3	27.5	34.2	32.4	30.5	56.7	52	38.2
American Indian	26.5	24.7	22.6	12.1	16.6	10.3	25.9	21.3	12.8	23.6	32.4	23.9	36.5	26.8	17.4	25.4	25.7	24.8	39.6	40.6	36.9
Two or more Races	47.3	48.1	44.1	19.1	24.2	15.8	25.4	22.7	15	29.8	32.3	24.7	41.3	39.7	31.2	48.9	50.4	41.6	58.1	58.7	51.5

Table 12

Student Proficiency Rates by Tier and Student Groups in IAR ELA

		Tier 1				Tier 3			Tier 4			
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	27.6	28.9	21.7	40.3	41.8	32.9	49.7	50.7	41.3	58.7	59.5	49.4
Targeted Groups												
English Learners	10.3	9.4	4	10.6	11	5.9	15.6	12.6	7.6	19.8	18.4	11.9
IEP	4.5	5.2	3.5	8.7	9.3	6.5	14	14.7	10.5	19.1	20.4	14.3
Low Income	20.9	21.7	13.8	24	25	17.1	28.1	29.7	21.5	34.4	33.8	23.6
Race/Ethnicity												
White	38.7	40.6	30.3	45.4	47.1	36.5	55.1	55	44.5	61	62.6	51.2
Black	16.5	17.6	10.4	19.6	18.6	12.3	26.9	28.6	22.7	32.7	29.9	23.1
Hispanic or Latino	23.1	23.9	15.4	27	29.8	21.1	32	30.7	23.9	39.1	40.5	30.9
Asian	56.9	56.2	45.6	66.2	68.6	57.1	70.5	64.7	51.9	75	75.5	67.8
Pacific Islander	48.2	51.5	36.4	41.4	42	33.5	43.7	44.4	41.2	55.2	49.5	39.5
American Indian	23.3	27.7	21	35.4	35.8	25.6	35.1	32.5	26.1	46.7	49.7	39.4
Two or more Races	31.4	32.3	23.4	38.5	39.4	30	56.4	59	46.3	62.7	63	53.6

Table 13
Student Proficiency Rates by Tier and Student Groups in IAR Math

		Tier 1				Tier 3		Tier 4				
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	21.6	23	15.9	35.5	35.9	28	43.3	44.9	36.8	53.6	53.5	45.3
Targeted Groups												
English Learner	9.6	10.2	3.6	13.3	13.2	7.5	15.3	13.8	8.2	22.9	20.7	12.6
IEP	4.5	5.2	3.5	9	9.8	7.1	13.4	15.3	11.5	18.8	19.5	15.5
Low Income	15.4	16.3	8.4	18.9	18.6	11.6	20.8	22.5	16.1	26.8	25.3	17.3
Race/Ethnicity												
White	31.7	33.2	23.7	40.5	40.7	31.3	49.3	49.5	39.9	56.2	56.7	47.1
Black	10.2	11.4	5	13.2	12.1	6.2	17.7	18.8	15.5	22.6	19.5	15.2
Hispanic or Latino	17.8	18.9	9.6	21.5	22.5	14.6	23.2	22.1	16.7	30.7	30.8	22.9
Asian	56.5	57.9	46.4	68.7	71.3	62.2	67.4	64.2	54.7	73.3	74.7	69.9
Pacific Islander	41.9	42.9	27.1	42.2	37	26.8	35.2	34.9	29.2	53.9	53.1	32.9
American Indian	18.3	20.9	15.6	28.8	30.3	19.1	26	24.7	22.4	41	41.1	35.5
Two or more Races	23.8	24.3	16.5	32.4	33.1	24.5	49.5	51.7	41.3	57.9	57.9	50.6

Table 14
Student Proficiency Rates by Adequacy Band and Student Groups in IAR ELA

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	27.9	27.3	21	23.7	27.6	20.6	33.9	32.7	24.3	40.1	43.6	34.3	45.3	44	34.9	49.7	51.1	42.2	58.7	59.5	49.4
Targeted Groups																					
English Learner	13.2	10.4	3.5	7	8.4	4.2	10.4	9.2	4.5	10.6	11.6	6.2	11.4	10.9	5.1	15.6	12.9	8.2	19.8	18.4	11.9
IEP	3.2	3.6	2.6	4.4	5.1	3.5	6.8	6.8	4.1	8.7	9.6	6.9	10.4	10.7	8.1	14	14.9	10.9	19.1	20.4	14.3
Low Income	22.5	21.5	13	18.8	21.9	14.5	21.9	22.2	14.5	24.7	26	18.3	25.1	25.8	17.4	28.1	29.7	21.6	34.4	33.8	23.6
Race/Ethnicity																					
White	58	56.5	46.1	33	40.9	31.2	40.7	40.2	29.7	44.2	46.9	36.8	50.2	49.4	38.4	55.1	55	45	61	62.6	51.2
Black	17.9	17.8	10.4	15.4	19	12.8	16.4	16.6	9.6	19.2	19.1	12.9	21.2	23.1	16.4	26.9	28.9	22.8	32.7	29.9	23.1
Hispanic or Latino	26.4	25.3	16.9	18.4	21.4	13.5	26.3	25.9	16.7	28.3	29.5	20.8	26	29.4	21.6	32	30.8	24.1	39.1	40.5	30.9
Asian	58.5	55.3	48.8	49.4	54.8	41.7	62	59.6	45.2	58.5	69.1	56.6	68.7	68.2	57.2	70.5	66.7	55.5	75	75.5	67.8
Pacific Islander	58	58.3	52.4	26.4	41	21	41.8	37.8	25.7	35.3	43.9	43	44.4	48.1	21.1	43.7	44.4	40.7	55.2	49.5	39.5
American Indian	30.5	30.6	28.7	16.6	22.2	17.1	34.4	30.8	17.9	29.4	39.9	35	39	33.1	19.3	35.1	33.3	26.4	46.7	49.7	39.4
Two or more Races	54.5	53.6	48	25.8	32.8	24.9	32.6	30.9	20.8	35.3	38.4	29.9	45.9	43.4	34.3	56.4	58.5	46.3	62.7	63	53.6

Table 15

Student Proficiency Rates by Adequacy Band and Student Groups in IAR Math

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	22.2	23.6	16.5	18.4	21.4	14.5	27.2	25	17.7	35.1	38.1	29.7	42.1	39.4	31.6	43.3	45.3	37.6	53.6	53.5	45.3
Targeted Groups																					
English Learner	11	11.3	3.5	7.7	9.9	3.9	11.4	9.5	3.5	11.5	14.1	8.7	15.1	13.1	7.2	15.3	14.1	9.1	22.9	20.7	12.6
IEP	3.4	3.9	2.4	4.3	5.3	3.6	6.8	6.7	4.3	8.8	10.1	7.3	11.3	12.2	9.3	13.4	15.5	11.7	18.8	19.5	15.5
Low Income	17.1	18	8.4	13.8	16.1	9	16	15.1	8.6	19	19.9	12.8	20.5	19.3	13	20.8	22.5	16.3	26.8	25.3	17.3
Race/Ethnicity																					
White	51.9	53.9	43	26.4	33.7	24	33.6	31.9	22.8	39.3	40.9	31.6	46.8	45.1	35.2	49.3	49.6	40.3	56.2	56.7	47.1
Black	11.8	12.8	5.6	8.4	10.2	4.8	10.1	9.9	4.3	14	12.4	6.8	13.8	14.6	9.3	17.7	18.9	15.5	22.6	19.5	15.2
Hispanic or Latino	20.4	21.5	11	14.6	16.6	8.6	20	18.6	9.9	21.8	21.6	14.7	20.6	23	16.1	23.2	22.2	16.9	30.7	30.8	22.9
Asian	60	61.6	53.3	50.2	55.3	44.4	57.9	55.5	41.7	58.9	73	62.7	72.8	70.4	61.4	67.4	66.2	58.3	73.3	74.7	69.9
Pacific Islander	49.2	53	41.9	24.1	20.5	15.8	38.6	31.4	16.3	40.4	38.6	29.1	49.3	40.7	26.3	35.2	34.9	29.4	53.9	53.1	32.9
American Indian	25	24.9	22.3	11.9	17.9	12.8	26.3	21.7	12.7	24.9	34	25.4	35.8	29	16.4	26	25.7	22.7	41	41.1	35.5
Two or more Races	46	47.4	42.8	19.1	25.2	15.8	24.8	22.3	13.7	28.9	32.1	24.6	41.5	40	31.8	49.5	51.4	41	57.9	57.9	50.6

Table 16
Student Proficiency Rates by Tier and Student Groups in SAT ELA

		Tier 1				Tier 2			Tier 4				
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	
All Students	25.9	26.7	23.1	40.3	39.2	35	46.5	44.4	39.1	57	56	52.1	
Targeted Groups													
English Learner	1.0	0.9	0.7	2.2	1.7	0.3	2.1	1.2	0.7	2.3	1.6	2	
IEP	4.1	4	3.5	7.1	6.3	6.5	10.2	10.5	9.7	18.1	19.6	15.4	
Low Income	17	17.1	14.1	20.8	19	16.1	23.9	21.9	17.4	25.7	24.8	23.1	
Race/Ethnicity													
White	38.5	39.2	34	46.1	44.7	38.9	53.7	52.6	47.2	65	63.4	58.6	
Black	13.1	13	10.5	13.5	12.2	11.1	15.3	16.8	12.5	22.1	21.3	18.1	
Hispanic or Latino	20.3	20.4	16.5	24.1	24.5	21.9	25.1	24.8	19.6	28.6	28.2	25	
Asian	49.8	51.8	49.4	68.4	70.5	70.7	53.8	52	46.3	69.4	68.3	67.7	
Pacific Islander	30.4	38.5	38	32.1	29	36	50	25	28.6	51.6	36	46.4	
American Indian	29.9	21.5	17	31.5	20.8	27.7	40	11.5	41.2	41.4	35.4	47.8	
Two or more Races	32.6	33.3	31.1	43.4	39	33.6	51.4	48.9	46	64.1	61.6	59.7	

Table 17
Student Proficiency Rates by Tier and Student Groups in SAT Math

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	23.1	24.3	19	36.7	35.9	30.6	44.2	42.6	36.2	56.5	57.8	49.4
Targeted Groups												
English Learner	2.4	2.9	1.4	4.8	3.1	2.3	6.9	5.5	3.3	7.3	8.2	5.2
IEP	2.9	3.2	2.2	4.8	4.4	4.7	7.8	8	6.9	14.8	18.7	13.2
Low Income	15.5	15.7	11.2	17.5	15.6	12.3	20.9	20.7	16.3	25.8	26.5	21.1
Race/Ethnicity												
White	32.9	34.7	28	41.9	41	34.4	51	50.5	43.8	63.9	64.7	54.9
Black	10.3	10.9	7.3	11.1	9.2	7.3	13.7	15.6	9.8	19.1	20	16.1
Hispanic or Latino	19.5	19.5	13.2	21.8	22.1	17.2	23.2	22	15.4	27.6	28.3	21.9
Asian	54.9	58.6	52.7	70.1	74.3	69.7	55.2	53.3	49.6	74.7	76.1	70.4
Pacific Islander	30	37.4	33.8	32.1	25.8	32	--	12.5	42.9	64.5	52	50
American Indian	26.2	17.8	12.5	27	20.8	21.3	20	26.9	35.3	37.9	39.6	43.5
Two or more Races	29.3	27.7	24	37.7	34.7	27	47.6	48.5	46.5	60.6	64.5	55.4

Table 18

Student Proficiency Rates by Adequacy Band and Student Groups in SAT ELA

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	25	25.8	22.7	23	22.5	19.4	34.5	31.9	28	37.9	42.4	37.7	49.7	39.6	35.4	46.5	44.9	39.5	57	56	52.1
Targeted Groups																					
English Learner	1.1	1	0.8	1	0.6	0.5	1.6	1.3	0.8	2	1.6	0.4	3	1.5		2.1	1.2	0.7	2.3	1.6	2
IEP	4.7	3.6	3.1	3	2.8	2.5	5.7	5.1	5	5.7	6.9	6.8	11.4	7.5	7.7	10.2	10.2	9.7	18.1	19.6	15.4
Low Income	18.7	18.8	15.4	14.8	14.5	11.7	17.7	17.2	14.4	22.1	19.9	17.8	23.8	19.7	16.3	23.9	22.2	17.5	25.7	24.8	23.1
Race/Ethnicity																					
White	61.3	64.4	62.6	33	35.8	31.6	42.4	39.6	33.7	43.8	44.8	38.7	53.4	44.5	38.9	53.7	52.8	47.2	65	63.4	58.6
Black	14.1	13.7	10.9	9.8	11.5	8.8	13.4	12.5	10.9	13	15.1	14.7	18.8	12.5	10.4	15.3	16.9	13.1	22.1	21.3	18.1
Hispanic or Latino	23.8	24.3	18.8	15.1	15.5	13	22.7	21.2	18.2	23.8	25.8	24.2	28.8	24.1	23.1	25.1	25	19.8	28.6	28.2	25
Asian	52.3	52	52.1	43.6	49.7	44.3	54.5	54.7	54.1	61.6	78.3	75.7	77.5	62.6	59.4	53.8	52.9	48.3	69.4	68.3	67.7
Pacific Islander	35.3	45.2	48.9	20	20	10	33.3	34	25	24.1	41.7	50	66.7	--	50	50	25	25	51.6	36	46.4
American Indian Two or more	36.7	29	25.8	19.4	7	6.5	35.7	22.4	14	10.3	26.9	29.4	52.6	11.8	42.9	40	11.5	41.2	41.4	35.4	47.8
Races	56.6	62.2	59	23.6	28.2	23.6	36.3	31.4	29	44.5	40.5	33.4	48.1	35.6	28.7	51.4	48.8	45.8	64.1	61.6	59.7

Table 19

Student Proficiency Rates by Adequacy Band and Student Groups in SAT Math

	CPS			0-59			60-69			70-79			80-89			90-99			100+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	24.9	26.1	20.1	18.9	18.6	14.9	30.2	28.4	22.7	33.9	39.1	33.8	47.4	37	31.6	44.2	43.2	37	56.5	57.8	49.4
Targeted Groups																					
English Learner	3.6	4.6	2.3	0.9	1.2	0.6	3.1	1.8	0.9	2.9	5.9	4.6	13.8	3	2.8	6.9	5.6	3.3	7.3	8.2	5.2
IEP	4	3.4	2.6	1.6	1.8	1.3	3.5	3.9	3	4.1	4.5	5	8.2	4.7	5	7.8	7.9	7	14.8	18.7	13.2
Low Income	19.5	20.2	13.6	11.6	11	8.3	13.8	13.6	10.1	17.8	16.3	14	21.3	17.8	12.8	20.9	20.9	16.5	25.8	26.5	21.1
Race/Ethnicity																					
White	57	60.3	56.9	26.5	30.4	25.2	37.7	35.3	27.9	39.2	41.1	34.4	50.3	41	34.9	51	50.9	44.3	63.9	64.7	54.9
Black	12.1	12.7	8	7.1	8.2	5.7	9.6	9.1	6.8	10	11.4	10.8	15.4	10.9	7.6	13.7	15.8	10.6	19.1	20	16.1
Hispanic or Latino	25.1	25.8	16.5	12.8	12.2	9.3	19.1	19	13.3	22.1	22.4	20.7	25.6	22.4	17.3	23.2	22.3	15.7	27.6	28.3	21.9
Asian	60.9	62.4	59	45.4	49.9	45.2	55.1	59.3	51.5	56	82.2	75.6	82.4	68.7	63.9	55.2	55	51.9	74.7	76.1	70.4
Pacific Islander	40	42.9	42.2	25	15	10	21.2	36.2	21.4	27.6	33.3	50	66.7	--	50		12.5	37.5	64.5	52	50
American Indian	35	24.7	22.7	15.3	7	2.2	26.2	18.4	12.5	17.2	26.9	17.6	47.4	11.8	21.4	20	26.9	35.3	37.9	39.6	43.5
Two or more Races	55.7	54.3	49.7	20.4	21	16.4	31	26.7	22.4	38.2	35.7	26.2	44.2	38.3	26.2	47.6	48.3	45.9	60.6	64.5	55.4

Appendix F

Academic Behavior Indicators

Table 20

4-Year Graduation Rates by Tier and Student Groups

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	80.8	81.7	81.5	89.7	88.7	88.3	91.7	92.0	91.9	93.8	94.0	93.6
Targeted Groups												
English Learners	73.1	68.8	70.9	79.9	76.6	75.2	76.0	73.9	73.3	86.5	82.7	82.7
IEP	65.9	66.6	66.6	72.3	72.7	72.8	70.3	71.7	71.1	77.1	76.4	75.9
Low Income	76.1	76.7	76.6	81.0	79.4	77.3	84.1	85.6	86.2	86.9	86.9	86.8
Race/Ethnicity												
White	87.4	87.4	86.4	91.7	90.8	90.7	92.9	94.3	93.4	95.3	95.3	94.9
Black	74.6	75.2	75.4	78.9	78.2	77.3	85.9	87.6	90.8	87.1	86.4	88.7
Hispanic or Latino	78.8	79.8	80.3	87.1	86.9	86.0	87.6	86.2	87.1	88.7	89.2	88.4
Asian	87.2	89.2	90.8	95.1	94.7	96.0	93.2	93.4	95.4	96.2	97.1	96.6
Pacific Islander	78.7	75.9	86.3	83.0	73.6	79.1	100	100	71.4	89.5	100	94.3
American Indian	75.9	75.0	74.8	80.2	75.0	78.4	90.5	85.0	87.0	83.3	95.6	90.0
Two or more races	81.1	83.7	77.2	87.0	86.3	81.6	93.5	93.2	91.1	93.5	94.1	94.9

Table 21
5-Year Graduation Rates by Tier and Student Groups

	Tier 1			Tier 2						Tier 3	Tier 4	
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	83.4	83.2	85.9	90.9	90.2	90.7	93.4	93.0	94.3	94.9	95.2	95.6
Targeted Groups												
English Learners	80.9	72.0	77.4	83.1	81.1	81.9	85.8	84.3	85.7	89.1	87.7	87.1
IEP	70.1	69.3	72.3	76.3	76.4	77.2	74.6	76.6	78.2	82.0	81.7	81.6
Low Income	78.7	78.8	82.5	83.2	82.2	88.3	88.2	88.0	90.1	89.4	89.7	91.2
Race/Ethnicity												
White	88.4	88.7	89.4	92.4	92.2	92.3	94.4	94.0	95.1	96.0	96.2	96.2
Black	77.3	77.1	81.0	81,7	79.6	82.4	88.7	90.3	92.7	91.4	90.4	91.3
Hispanic or Latino	82.5	81.6	85.5	89.4	88.4	90.0	89.9	89.6	91.8	90.4	91.3	92.9
Asian	92.5	90.9	93.0	95.4	95.8	95.3	96.1	96.5	95.4	97.0	97.6	97.5
Pacific Islander	86.9	76.3	94.0	89.4	90.0	85.3	50.0	100.0	100.0	80.0	100.0	92.0
American Indian	78.2	83.7	81.0	90.7	81.4	82.1	78.9	90.0	90.0	89.3	81.4	95.6
Two or more races	83.4	82.9	82.4	89.0	87.0	86.7	92.3	92.9	94.9	95.1	95.2	96.0

Table 22
4-Year Graduation Rates by Adequacy Band and Student Groups

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	76.3	76.5	78.2	82.5	82.4	81.7	86.5	85.9	85.0	89.6	90.4	89.5	92.2	89.7	89.6	91.7	92.2	91.7	93.8	94.0	93.6
Targeted Groups																					
English Learner	76.1	67.0	69.6	68.2	66.8	69.4	80.2	75.3	75.5	78.1	81.8	77.9	77.7	76.6	73.5	76.0	74.1	73.3	86.5	82.7	82.7
IEP	61.8	62.0	64.4	67.5	67.3	66.3	69.9	70.1	69.4	74.2	75.4	74.3	73.2	73.1	75.0	70.3	72.0	71.5	77.1	76.4	75.9
Low Income	74.6	75.0	77.0	77.5	77.8	77.3	78.1	78.5	75.3	82.2	79.7	78.8	81.9	80.6	79.2	84.1	85.7	85.8	86.9	86.9	86.8
Race/Ethnicity																					
White	83.0	83.1	85.4	86.9	87.9	86.7	89.7	88.3	87.6	92.0	91.3	90.9	93.5	91.8	92	92.9	94.3	93.2	95.3	95.3	94.9
Black	71.8	72.0	74.0	79.7	79.3	78.4	76.0	78.1	76.5	79.9	79.0	77.1	84.2	79.8	78.3	85.9	87.7	89.8	87.1	86.4	88.7
Hispanic or Latino	77.8	78.2	79.4	78.2	78.8	79.4	86.9	85.4	84.6	85.2	90.5	87.6	86.5	84.4	84.8	87.6	86.2	87.1	88.7	89.2	88.4
Asian	84.6	85.0	89.1	90.2	94.1	91.2	91.2	92.1	93.6	94.8	96.3	97.1	97.3	95.1	94.3	93.2	93.4	95.3	96.2	97.1	96.6
Pacific Islander	81.8	81.8	89.2	70.0	73.3	80	82.9	71.9	79.1	79.2	86.7	83.3	100	40.0	100	100	100	71.4	89.5	100	94.3
American Indian	72.5	73.8	72.1	75.0	71.4	76.8	83.5	73.4	73.1	68.4	81.1	92.3	94.7	93.8	77.8	90.5	85.0	87	83.3	95.6	90.0
Two or more Races	80.9	81.2	69.6	80.6	84.8	78.2	82.7	83.8	79.9	87.1	88.3	81.2	93.9	84.4	82.8	93.5	93.3	90.8	93.5	94.1	94.9

Table 23
5-Year Graduation Rates by Adequacy Band and Student Groups

	CPS			0-59			60-69			70-79			80-89			90-99			$100+$		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	79.6	77.8	83.7	84.6	84.4	85.9	88.3	87.6	88.4	90.9	91.5	91.4	93.4	91.9	91.7	93.4	93.2	94.4	94.9	95.2	95.6
Targeted Groups																					
English Learner	85.3	69.0	76.3	74.0	70.9	75.3	85.1	80.4	82.9	80.7	85.6	84.5	84.2	75.9	77.2	85.8	84.5	85.6	89.1	87.7	87.1
IEP	67.4	63.3	70.3	71.3	69.2	72.4	73.5	74.5	74.3	78.8	77.6	78.1	74.5	79.1	81.7	74.6	77.0	78.6	82.0	81.7	81.6
Low Income	78.3	76.7	83.4	79.7	80.8	82.5	79.7	80.8	82.0	83.8	83.2	82.1	85.3	83.8	83.9	88.2	87.9	90.1	89.4	89.7	91.2
Race/Ethnicity																					
White	84.8	84.1	88.6	87.8	88.3	89.1	90.7	89.8	90.2	92.5	92.7	92.5	94.2	93.9	92.9	94.4	94.1	95.2	96.0	96.2	96.2
Black	74.9	73.3	80.2	80.8	83.4	82.9	79.5	80.1	81.8	83.7	80.1	80.8	86.8	77.5	83.9	88.7	90.4	93	91.4	90.4	91.3
Hispanic or Latino	82.0	79.4	85.1	81.7	81.4	84.1	89.0	87.5	89.1	87.3	90.7	91.3	91.3	88.1	89.0	89.9	89.7	91.9	90.4	91.3	92.9
Asian	91.4	89.3	91.1	93.8	92.9	94.5	94.2	92.2	94.4	92.7	97	95.9	96.9	97.4	95.8	96.1	96.7	95.3	97.0	97.6	97.5
Pacific Islander	88.5	79.3	94.7	72.7	71.4	88.9	91.7	81.8	93.6	90.9	90.9	83.3	84.6	100	66.7	50.0	100	100	80.0	100.0	92.0
American Indian	73.4	85.4	85.4	80.0	81.4	75.4	84.4	80.9	78.4	88.0	84.2	78.1	100	93.8	100	78.9	87.1	90	89.3	81.4	95.6
Two or more Races	81.4	78.9	75.7	84.6	83.0	88.7	84.3	85.0	82.3	91.6	85.0	86.7	93.7	90.8	91.2	92.3	93.4	95.2	95.1	95.2	96.0

Table 24
Attendance Rates by Tier and Student Groups

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	93.2			94.3			95.0			94.8		
Targeted Groups												
English Learners	94.2			94.3			94.6			94.2		
IEP	91.5			92.4			93.3			93.2		
Low Income	92.7			92.8			93.9			93.1		
Race/Ethnicity												
White	93.9			94.7			95.0			94.9		
Black	92.2			91.6			94.6			93.8		
Hispanic or Latino	93.4			93.9			94.6			93.7		
Asian	95.6			95.8			95.7			96.0		
Pacific Islander	94.4			94.5			95.1			94.6		
American Indian	93.0			93.4			94.1			93.4		
Two or more races	92.7			93.9			94.9			94.8		

Table 25

Chronic Truancy Rates by Tier and Student Groups

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students		18.8	32.0		7.7	16.4		3.1	8.0		3.3	7.9
Targeted Groups												
English Learners		17.7	33.5		7.7	21.2		9.4	15.4		7.1	16.3
IEP		23.7	38.3		11.6	23.9		5.2	13.4		6.5	14.9
Low Income		23.9	40.1		15.4	30.2		6.9	17.8		8.7	19.4
Race/Ethnicity												
White		8.3	17.7		3.8	9.8		2.0	5.1		2.0	5.2
Black		31.7	49.4		27.8	44.9		6.8	19.6		11.8	22.6
Hispanic or Latino		20.7	34.6		8.8	22.1		5.9	15.9		6.9	17.2
Asian		9.6	14.3		1.9	4.8		3.5	6.0		2.1	3.9
Pacific Islander		13.9	25.9		11.5	22.4		5.9	7.1		4.2	6.6
American Indian		22.0	37.1		13.0	22.5		9.4	12.1		6.7	14.1
Two or more races		16.6	32.0		10.1	22.5		3.1	7.1		3.1	7.3

Table 26
Chronic Absenteeism Rates by Tier and Student Groups

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students		21.8	26.1		15.0	18.1		10.1	18.2		10.5	10.5
Targeted Groups												
English Learners		17.8	25.1		16.1	21.6		16.0	24.2		14.6	18.4
IEP		30.4	34.1		23.9	27.3		17.5	25.3		18.5	20.1
Low Income		26.1	32.6		25.6	31.7		18.6	29.6		20.0	22.9
Race/Ethnicity												
White		17.0	17.3		11.6	13.3		8.4	14.3		9.4	8.4
Black		31.1	39.6		33.3	40.4		16.8	33.1		19.7	23.6
Hispanic or Latino		20.9	26.0		16.6	22.0		15.1	26.9		15.2	18.5
Asian		11.1	9.9		8.4	5.6		8.0	21.8		6.9	5.4
Pacific Islander		18.3	19.9		20.8	22.7		9.5	15.9		13.0	9.2
American Indian		25.7	30.6		22.9	23.4		17.8	19.5		17.8	18.3
Two or more races		24.9	28.7		18.7	23.5		11.5	17.8		10.2	10.5

Table 27
Attendance Rates by Adequacy Band and Student Groups

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	93.3			92.9			93.6			94.5			94.9			95.0			94.8		
Targeted Groups																					
English Learner	94.5			93.9			94.5			93.8			94.3			94.6			94.2		
IEP	91.2			91.5			92.0			92.2			93.3			93.3			93.2		
Low Income	92.9			92.6			92.3			93.1			93.4			93.9			93.1		
Race/Ethnicity																					
White	94.3			93.5			94.2			95.0			95.1			95.0			94.9		
Black	92.4			92.3			91.3			91.9			93.3			94.6			93.8		
Hispanic or Latino	93.6			93.1			93.8			93.4			94.4			94.6			93.7		
Asian	95.7			95.2			95.6			95.6			95.8			95.7			96		
Pacific Islander	95.2			93.0			93.7			92.6			96.3			95.1			94.6		
American Indian	93.5			92.5			93.0			92.9			94.2			94.1			93.4		
Two or more Races	93.6			92.4			93.0			94.1			94.6			94.9			94.8		

Table 28

Chronic Truancy Rate by Adequacy Band and Student Groups

	CPS			0-59			60-69			70-79			80-89			90-99			100+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students		28.5	42.2		16.8	26.9		12.0	25.1		6.0	14.7		4.3	11.1		3.0	7.8		3.3	7.9
Targeted Groups																					
English Learner		20.9	36.2		17.0	30.4		13.1	32.3		6.0	19.8		5.7	15.6		7.0	15		7.1	16.3
IEP		36.6	50.7		20.5	32.5		15.9	31.1		10.0	22.5		7.3	17.9		5.1	13.1		6.5	14.9
Low Income		31.4	47.2		20.6	32.9		18.1	35.8		12.6	28.4		9.3	23.0		6.9	17.4		8.7	19.4
Race/Ethnicity																					
White		13.4	20.0		7.4	14.8		6.7	16.2		4.0	10		2.2	6.6		2.0	5.1		2.0	5.2
Black		38.9	55.8		25.8	39.6		26.5	45.4		22.4	47.1		14.6	29.8		6.6	18.5		11.8	22.6
Hispanic or Latino		25.4	39.8		19.7	30.2		13.1	29.8		6.8	20.3		6.7	17.8		5.8	15.8		6.9	17.2
Asian		12.3	16.2		9.2	11.3		4.7	12.2		2.1	4.6		1.2	3.6		3.2	5.4		2.1	3.9
Pacific Islander		14.8	27.2		14.2	19.5		14.4	31.3		8.8	20		3.4	12		5.8	6.7		4.2	6.6
American Indian		28.4	40.6		20.5	36.1		17.5	31.3		9.3	22.3		8.5	17.6		9.3	11.8		6.7	14.1
Two or more Races		20.5	26.5		16.3	27.6		14.9	32.7		10.6	24.2		5.5	13.9		3.1	6.8		3.1	7.3

Table 29

Chronic Absenteeism Rates by Adequacy Band and Student Groups

	CPS			0-59			60-69			70-79			80-89			90-99			100+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students		24.0	30.2		22.0	23.3		19.8	23.6		13.3	17.0		12.1	13.7		10.0	18.1		10.5	10.5
Targeted Groups																					
English Learner		18.2	24.8		17.9	24.6		17.5	26.2		14.6	20.5		15.9	19		16.0	23.9		14.6	18.4
IEP		33.6	38.4		30.8	31.6		28.1	31.8		22.1	26.6		19.8	23		17.6	25.0		18.5	20.1
Low Income		26.3	34.1		25.3	28.5		27.4	33.6		23.7	31.6		20.8	26.6		18.7	29.4		20.0	22.9
Race/Ethnicity																					
White		14.9	13		18.5	15.3		15.6	17.4		11.4	13.7		10.1	10.2		8.4	14.2		9.4	8.4
Black		31.6	41		30.9	36.4		33.4	40.3		28.8	42.6		20.6	28.5		17.0	32.8		19.7	23.6
Hispanic or Latino		21.7	28		21.3	23.8		19.2	24.8		15.1	21.5		15.3	20.0		15.1	26.8		15.2	18.5
Asian		11.2	10.2		12.2	8.7		9.7	9.9		8.2	4.6		9.0	4.5		7.9	21.4		6.9	5.4
Pacific Islander		14	17.6		26.3	16.4		22.4	30.3		21.2	21.3		13.3	11.0		9.4	16.8		13.0	9.2
American Indian		26.1	30.8		22.8	30.5		27.9	29.2		19.2	22		21.9	19.4		17.9	19.1		17.8	18.3
Two or more Races		19.5	18.5		26.8	26.3		24.2	30.4		19.3	25.3		13.6	16.4		11.6	18		10.2	10.5

Table 30
Out-of-school Suspension Rate by Tier and Student Groups

	Tier 1			Tier 2				Tier 3		Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	3.9	4.1	0.3	2.7	2.6	0.5	1	1.2	0.2	1.2	1.2	0.2
Targeted Groups												
English Learners	1.7	2.2	0.1	1.4	1.2	0.1	0.8	1.2	0.1	1.3	1.3	0.1
IEP	6.7	6.7	0.7	5.2	4.6	1	2.4	2.3	0.5	3	2.7	0.5
Low Income	4.7	5.2	0.4	5.2	4.8	0.8	2	2.6	0.4	3	2.7	0.4
Race/Ethnicity												
White	2.6	2.6	0.5	1.7	1.6	0.5	0.8	0.9	0.2	0.9	0.9	0.2
Black	7.9	8.4	0.4	10.2	9.2	0.8	3.3	3.6	0.4	5.6	4.8	0.4
Hispanic or Latino	2.3	2.9	0.1	2.2	1.9	0.2	1.2	2.1	0.2	2.2	2	0.2
Asian	0.4	0.6	0.1	0.1	0.4	0	0	0.4	0.1	0	0.3	0
Pacific Islander	2.2	1.9	0.1	3.7	1	0.8	0	3	0	0	1.8	0.3
American Indian	3.3	3.9	0.2	2.7	2.5	0.6	0.3	3.4	0.3	2.2	2.4	0
Two or more races	5.8	5.3	0.7	3.8	3.5	0.7	1.6	1.4	0.2	1.5	1.1	0.2

Table 31

In-School Suspension Rate by Tier and Student Groups

	Tier 1			Tier 2			Tier 3			Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	3.4	3.3	0.3	2.2	2	0.4	1.6	1.3	0.3	1.5	1.3	
Targeted Groups												
English Learners	2.3	2.3	0.1	1.7	1.3	0.1	1.2	1.6	0.3	1.6	1.5	0.1
IEP	4.4	4.2	0.5	3.3	2.7	0.7	3	2.3	0.5	2.8	2.4	0.4
Low Income	4.0	3.9	0.3	3.4	3	0.6	3.2	2.6	0.5	3	2.6	
Race/Ethnicity										0.3		
White	2.6	2.6	0.6	1.9	1.7	0.5	1.2	1.1	0.3	1.1	1	0.2
Black	5.0	5	0.2	3.6	3.6	0.4	4	3	0.7	4.4	3.6	0.1
Hispanic or Latino	3.1	3.1	0.1	2.9	2.1	0.2	2.4	2.2	0.3	2.8	2.5	0.1
Asian	0.4	0.9	0.1	0.2	0.4	0	0.1	0.4	0.1	0	0.7	0
Pacific Islander	2.6	2.2	0.2	2.4	1.6	0.6	0.8	2.3	0.8	2	2.1	0
American Indian	3.4	3.6	0.1	4.1	3.2	0.5	2.1	1.5	0	1.3	1.1	0.5
Two or more races	4.4	3.7	0.6	2.6	2.1	0.6	1.8	1.4	0.2	1.4	1.2	0.1

Table 32

In-School Suspension Rates by Adequacy Band and Student Groups

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	2.2	2.6	0	3.9	3.8	0.2	3.4	3.2	0.6	2.1	1.7	0.4	2.1	2	0.3	1.6	1.4	0.3	1.5	1.3	0.1
Targeted Groups																					
English Learner	1.4	1.8	0	3.2	2.8	0.1	2.7	2.5	0.3	1.7	0.9	0.1	1.2	1.5	0.1	1.2	1.6	0.3	1.6	1.5	0.1
IEP	3.4	4	0	4.6	4.3	0.3	4.5	3.9	1	3.1	2.4	0.8	3.6	2.9	0.6	3	2.4	0.6	2.8	2.4	0.4
Low Income	2.5	3	0	4.8	4.6	0.2	4.9	4.2	0.8	3.5	2.8	0.7	3.4	3.2	0.4	3.2	2.7	0.6	3	2.6	0.3
Race/Ethnicity																					
White	1.1	1.2	0	2.6	2.4	0.4	2.6	2.6	0.7	1.7	1.7	0.5	1.8	1.6	0.4	1.2	1.2	0.3	1.1	1	0.2
Black	3.2	3.8	0	6.5	6.7	0.1	5.8	5.4	0.6	5	3.5	0.4	4.4	3.7	0.3	4	3.2	1	4.4	3.6	0.1
Hispanic or Latino	1.9	2.2	0	4.1	3.8	0	3.7	3.3	0.3	2.5	1.7	0.2	2.9	3	0.2	2.4	2.2	0.3	2.8	2.5	0.1
Asian	0.5	0.7	0	1.3	1	0	1	1.1	0.1	0.5	0.4	0	0.6	0.4	0	0.8	0.4	0.1	0.6	0.7	0
Pacific Islander	1.4	1.9	0	4.5	2.2	0	2.6	2.8	0.8	4.3	1.4	0.4	1.5	0	1	0.8	2.2	0.8	2	2.1	0
American Indian	2.6	2.4	0	3.3	3.2	0	4.2	4	0.5	5	3.7	0.2	4.3	4.9	0.9	2.1	1.5	0	1.3	1.1	0.5
Two or more Races	1.2	1.2	0	4.3	4	0.4	4.5	3.8	0.8	2.4	1.9	0.6	2.5	2	0.4	1.8	1.5	0.3	1.4	1.2	0.1

Table 33

Out-of-school Suspension Rates by Adequacy Band and Student Groups

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	2.4	3.6	0	4.4	4.3	0.2	4.7	4.4	0.6	2.3	1.7	0.5	1.4	1.8	0.2	1	1.2	0.2	1.2	1.2	0.2
Targeted Groups																					
English Learner	1	1.6	0	2.3	2.8	0.1	2.2	2.3	0.3	1.7	0.9	0.1	0.7	0.9	0.1	0.8	1.2	0.1	1.3	1.3	0.1
IEP	4.4	6.5	0	7.4	6.6	0.5	8.1	6.8	1.3	4.5	3.5	1.1	2.9	3.3	0.7	2.4	2.4	0.6	3	2.7	0.5
Low Income	2.7	4.2	0	5.4	5.2	0.2	7.8	6.6	0.9	4.2	3.1	1	2.6	3.5	0.4	2	2.6	0.4	3	2.7	0.4
Race/Ethnicity																					
White	0.8	0.7	0	3.1	2.5	0.3	2.5	2.6	0.6	1.6	1.5	0.5	1.1	1.3	0.3	0.8	0.9	0.2	0.9	0.9	0.2
Black	4.2	6.5	0	10.4	9.5	0.3	14.1	12	1	7.6	4.4	0.9	4.8	5.8	0.3	3.3	3.6	0.6	5.6	4.8	0.4
Hispanic or Latino	1.5	2.4	0	3.2	3.6	0.1	3	2.9	0.3	2.3	1.7	0.3	1.4	1.7	0.1	1.2	2.1	0.2	2.2	2	0.2
Asian	0.5	0.6	0	0.7	0.6	0	0.8	0.7	0.2	0.7	0.3	0	0.3	0.3	0	0.2	0.3	0.1	0.3	0.3	0
Pacific Islander	1.6	1.1	0	4.5	3.5	0	3.8	2.4	0.5	3	0	1.3	0	1	0	0	3	0	0	1.8	0.3
American Indian	2	2.5	0	3.5	4	0.1	4.3	4.6	0.4	2.8	1.7	0.9	1.8	2.4	0.4	0.3	3.3	0.3	2.2	2.4	0
Two or more Races	1.6	1.5	0	5.8	5.5	0.3	6.4	6.2	1	3.6	2.7	0.8	2.2	2.1	0.3	1.6	1.4	0.3	1.5	1.1	0.2

Table 34
High School Dropout Rates by Tier and Student Groups

	Tier 1			Tier 2				Tier 3		Tier 4		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	3.1	5.7	3.3	1.2	3.4	2.5	0.7	2.1	1.3	0.6	1.5	
Targeted Groups												
English Learners	3.1	2.6	4.4	2.0	1.8	4.3	2.9	2.1	3.0	2.0	1.6	2.8
IEP	0.8	4.6	3.4	0.9	4.1	3.0	0.5	3.3	1.8	0.4	2.1	1.6
Low Income	4.1	6.9	4.0	2.3	6.1	4.5	1.4	3.6	2.3	1.5	3.1	
Race/Ethnicity												
White	1.8	3.9	2.9	1.0	2.7	2.2	0.6	1.6	1.2	0.4	1.1	
Black	4.5	8.4	4.2	2.4	7.5	4.3	0.9	3.7	2.0	1.3	4.1	1.9
Hispanic or Latino	3.6	5.8	3.1	1.3	3.5	2.3	0.9	3.2	1.6	1.2	2.5	1.7
Asian	1.0	2.9	1.3	0.3	1.7	1.1	0.5	1.5	0.4	0.2	0.8	0.4
Pacific Islander	3.8	7.2	1.7	1.7	4.7	4.3	--	--	--	--	2.4	1.7
American Indian	3.3	7.1	5.2	2.5	7.5	4.5	1.4	6.0	1.2	1.5	2.7	3.1
Two or more races	2.7	5.6	4.4	1.7	4.7	3.3	1.0	2.2	1.0	0.4	1.2	

Table 35
Dropout Rates by Adequacy Band and Student Groups

	CPS			0\%-59\%			60\%-69\%			70\%-79\%			80\%-89\%			90\%-99\%			100\%+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	4.7	7.5	2.8	2.5	5.0	3.5	1.6	4.5	3.2	1.1	2.9	2.5	0.8	3.2	2.1	0.7	2.1	1.3	0.6	1.5	1.0
Targeted Groups																					
English Learner	2.4	2	3.7	4.1	3.5	5.1	2.6	2.0	4.5	1.3	1.8	4.1	1.9	3.5	5.2	2.9	2.1	3.0	2.0	1.6	2.8
IEP	0.7	4.6	2.5	0.8	4.1	4.0	0.8	4.8	3.6	1.1	3.7	2.9	0.6	3.9	3.0	0.5	3.3	1.9	0.4	2.1	1.6
Low Income	5.2	7.6	2.9	3.2	5.9	4.2	2.9	6.7	5.1	1.9	5.3	4.6	1.9	6.3	4.1	1.4	3.6	2.3	1.5	3.1	2.1
Race/Ethnicity																					
White	2.3	3.8	2.0	2.0	4.1	3.0	1.3	3.6	2.8	0.9	2.5	2.3	0.7	2.4	1.9	0.6	1.6	1.2	0.4	1.1	0.9
Black	6.3	9.7	3.4	2.9	6.5	4.3	2.6	7.6	5.0	1.8	6.4	5.2	1.6	8.7	4.3	0.9	3.6	2.1	1.3	4.1	1.9
Hispanic or Latino	4.3	6.9	2.7	3.0	5.2	3.5	1.8	4.1	3.0	1.0	3.1	2.3	1.3	4.2	2.2	0.9	3.2	1.6	1.2	2.5	1.7
Asian	1.4	3.7	1.3	0.5	2.1	1.2	0.6	2.1	1.1	0.2	1.4	1.1	0.1	2.8	0.8	0.5	1.5	0.6	0.2	0.8	0.4
Pacific Islander	2.7	3.3	1.0	5.9	11.0	4.9	2.6	8.1	3.8	1.2	3.6	1.9	4.0	6.7	0		0	0		2.4	1.7
American Indian	3.1	7.3	4.9	4.0	6.7	5.7	2.0	8.1	5.1	3.4	7.4	5.2	2.6	2.5	1.5	1.4	6.9	1.2	1.5	2.7	3.1
Two or more Races	2.8	5.5	3.4	2.5	5.2	3.7	2.5	5.8	4.5	1.7	4.3	3.5	0.8	3.8	2.0	1.0	2.2	1.2	0.4	1.2	0.9

Table 36

$9^{\text {th }}$ Grade on Track Rates by Tier and Student Groups

	Tier 1			Tier 2					Tier 3			Tier 4
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	83.3	82.4	77.5	87.9	87.8	82.4	92.7	92.4	90.6	93.7	95.1	93.3
Targeted Groups												
English Learners	75.5	74.6	70.0	76.0	78.1	69.7	81.8	81.7	81.2	81.6	87.5	86.1
IEP	75.0	74.2	71.7	75.3	74.9	72.5	83.9	84.5	84.6	83.9	86.6	86.9
Low Income	79.1	77.5	71.8	77.4	77.8	67.4	84.7	84.8	79.9	86.0	88.4	83.5
Race/Ethnicity												
White	87.5	88.2	82.5	91.0	90.9	86.3	94.6	94.5	93.8	95.2	96.4	95.5
Black	77.5	73.9	72.4	70.0	72.0	63.5	77.6	84.9	82.2	86.0	87.3	85.8
Hispanic or Latino	82.6	81.0	75.1	84.2	83.8	77.9	88.3	86.7	83.5	88.3	89.4	86.1
Asian	95.1	94.7	92.9	97.7	97.6	95.9	98.6	96.5	94.8	97.2	98.2	97.1
Pacific Islander	88.6	87.7	79.3	90.9	88.2	80.6	80.0	100.0	100.0	93.6	100.0	86.4
American Indian	81.5	81.7	72.5	71.0	76.6	69.7	78.9	88.2	66.7	89.2	88.7	81.4
Two or more races	80.8	81.7	75.8	84.9	84.1	75.4	92.7	93.5	88.9	93.1	96.5	92.8

Table 37
Percentage of High School Students Who Took Advanced Coursework by Tier and Student Groups

| | Tier 1 | | | Tier 2 | | | | Tier 3 | | | Tier 4 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SY 18 | SY 19 | SY 21 | SY 18 | SY 19 | SY 21 | SY 18 | SY 19 | SY 21 | SY 18 | SY 19 | SY 21 |
| All Students | 26.5 | 26.9 | 30.0 | 28.6 | 29.4 | 31.1 | 36.8 | 37.3 | 42.2 | 40.3 | 42.0 | 45.1 |
| Targeted Groups | | | | | | | | | | | | |
| English Learners | 7.5 | 9.6 | 12.8 | 8.3 | 13.3 | 14.2 | 4.5 | 8.4 | 17.1 | 8.6 | 10.8 | 14.1 |
| IEP | 6.7 | 6.6 | 8.1 | 7.3 | 7.3 | 8.9 | 6.3 | 7.5 | 11.5 | 9.0 | 10.0 | 12.4 |
| Low Income | 20.9 | 22.1 | 25.1 | 19.5 | 19.8 | 19.3 | 22.7 | 24.1 | 28.7 | 26.9 | 28.8 | 34.2 |
| Race/Ethnicity | | | | | | | | | | | | |
| White | 29.8 | 30.1 | 32.7 | 28.8 | 29.3 | 30.6 | 38.7 | 40.2 | 44.3 | 41.2 | 42.9 | 45.4 |
| Black | 19.7 | 19.4 | 23.3 | 18.9 | 18.0 | 19.6 | 17.1 | 18.9 | 22.8 | 19.9 | 22.5 | 25.8 |
| Hispanic or Latino | 26.6 | 26.7 | 29.5 | 26.9 | 30.7 | 32.6 | 27.7 | 29.0 | 36.3 | 32.1 | 33.9 | 36.2 |
| Asian | 47.6 | 48.4 | 53.5 | 56.6 | 60.4 | 63.4 | 49.7 | 50.1 | 56.1 | 56.3 | 59.5 | 62.9 |
| Pacific Islander | 32.6 | 37.6 | 38.7 | 33.5 | 29.0 | 29.4 | 42.9 | 40.7 | 39.3 | 36.6 | 41.6 | 47.5 |
| American Indian | 24.9 | 23.9 | 28.3 | 20.4 | 24.3 | 28.1 | 26.1 | 34.4 | 35.0 | 28.5 | 32.2 | 36.0 |
| Two or more races | 28.5 | 28.1 | 31.4 | 28.8 | 28.5 | 27.9 | 55.3 | 39.2 | 46.7 | 42.6 | 34.3 | 46.1 |

Table 38

$9^{\text {th }}$ Grade on Track Rates by Adequacy Band and Student Groups

	CPS			0-59			60-69			70-79			80-89			90-99			100+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	86.8	81.5	79.0	80.5	81.1	75.5	84.4	84.6	78.4	88.1	89.5	83.7	90.9	88.6	84.5	92.7	92.2	90.4	93.7	95.1	93.3
Targeted Groups																					
English Learner	84.5	78.8	73.5	65.8	69	67.2	72.2	75.1	67.2	77.8	86.6	73.3	77.1	78.1	77	81.8	80.9	80.4	81.6	87.5	86.1
IEP	81.3	75.1	73.6	70.1	71.8	71.8	72	74.4	70.5	77.4	76.6	72.3	78.4	75.7	76.2	83.9	84	84	83.9	86.6	86.9
Low Income	85.4	79.7	76.9	75.5	76.3	69.3	73.8	75.9	66.7	78.9	78.5	66.7	79.7	79.8	70	84.7	84.5	79.8	86	88.4	83.5
Race/Ethnicity																					
White	92.3	91.4	89	85.8	89	83.1	88.8	88.5	82.6	91.7	90.8	86	93.4	91.8	89.3	94.6	94.3	93.5	95.2	96.4	95.5
Black	83.4	75	75.6	73	72.3	71.3	69.4	72.4	67.6	68.7	75.7	60.1	74.4	65.9	52.3	77.6	83.4	80.2	86	87.3	85.8
Hispanic or Latino	87.6	82.9	78.2	77.1	78	71.7	82.9	82.1	74.7	82.6	87.5	80.7	85.6	83.8	79.9	88.3	86.8	83.5	88.3	89.4	86.1
Asian	95.2	93.4	92	95.6	94.7	93.6	95.2	96.7	93.4	97.1	98.5	97.4	99	96.5	94.9	98.6	96.1	94.9	97.2	98.2	97.1
Pacific Islander	95.1	90.2	80.9	80	76.9	68.8	82.5	88.2	80	93.8	90.9	92.3	100	80	71.4	80	100	100	93.6	100	86.4
American Indian	94.7	84.5	76.9	68.4	80.3	66.7	82.2	76.3	70.1	74.5	77.8	75	57.9	81.8	87.5	78.9	88.2	66.7	89.2	88.7	81.4
Two or more Races	87.8	84.6	84.9	79.1	83.2	75.7	81.6	82.7	73.8	86.2	80.3	74.2	85.2	84.2	75.3	92.7	92.3	87.4	93.1	96.5	92.8

Table 39

Advanced Coursework Rates by Adequacy Band and Student Groups

	CPS			0-59			60-69			70-79			80-89			90-99			100+		
	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21	SY 18	SY 19	SY 21
All Students	28.1	28.3	32.0	25.4	28.0	29.7	26.6	25.9	29.0	25.8	30.1	31.6	36.6	32.2	32.4	36.8	36.6	41.4	40.3	42.0	45.1
Targeted Groups																					
English Learner	6.9	9.9	12.7	8.5	10.6	13.9	6.1	9	11.3	10.8	12.8	19.1	10.4	14.4	12.1	4.5	8.3	16.8	8.6	10.8	14.1
IEP	4.3	4.5	6.6	8.2	9	9.5	7.1	7	8.6	7.9	6.7	8.6	9.8	9.2	11.5	6.3	7.4	11.2	9	10	12.4
Low Income	21.7	24.4	27.1	20.8	23.8	25.5	18.4	18.5	21.1	18.8	16.5	17.7	25.6	22.9	21.8	22.7	23.8	28.2	26.9	28.8	34.2
Race/Ethnicity																					
White	48.9	50.3	54.0	26.9	31.1	33.6	28.7	27.7	29.7	26.5	29	30.2	33.9	31.3	32.5	38.7	39.1	43.0	41.2	42.9	45.4
Black	19.2	18	21.4	21.8	25.2	23.5	18.7	18.2	24.7	17.7	16.7	18.1	23.1	19.5	19.0	17.1	18.8	22.1	19.9	22.5	25.8
Hispanic or Latino	29.3	29.6	32.6	24.5	25.8	28.4	23.4	24.5	27.8	26.1	29.6	30.4	35.7	37.1	33.0	27.7	29	36.1	32.1	33.9	36.2
Asian	50.4	50.9	56.4	42.4	47.1	50.1	47.1	47.6	52.0	43.9	65.6	69.3	67.1	59.7	60.3	49.7	49.6	55.2	56.3	59.5	62.9
Pacific Islander	40.1	38.6	47.1	27.1	32	16.4	27.1	35.3	32.2	27.7	30.2	30.0	64	25	25.0	42.9	39.3	37.9	36.6	41.6	47.5
American Indian	29.7	31.2	36.0	18.4	16.3	20.8	27.6	22.6	27.8	12.4	24.4	23.1	26	28.4	35.0	26.1	34	35.0	28.5	32.2	36.0
Two or more Races	39	42.9	51.6	25.2	29.6	30.0	27.6	24.2	26.9	25.8	29.7	28.4	36.2	30.1	26.8	55.3	38.1	44.5	42.6	34.3	46.1

Appendix G

Survey for District Administrators and Principals (DRAFT)

This survey is part of an evaluative study by the Illinois State Board of Education's Professional Review Panel, a legislatively (Public Act 100-0465) created group that reviews and recommends modifications to the Evidence-Based Funding formula. Your school has been selected to share how expenditures (full-time equivalencies [FTE] and Per Pupil investments) changed from the baseline 2017-18 school year to 2018-19, because your student achievement scores, including student subgroups, increased during that time period. We would like to know how, if at all, the additional EBF funding may relate to increased achievement.

Your answers to this survey will be aggregated with other survey respondents and will be reported together to show combined trends. Completion of this survey is your consent to participate in the study. You are free to answer all or none of the questions without repercussions. This study has been approved by the Institutional Review Board at Norther Illinois University. If you have any questions about the survey, please contact the Director of Research, at ISBEResearch@isbe.net. Data gathered for this study are not eligible for Freedom of Information Act requests.

Note that there may be questions about how to account for staff that have different position titles and/or for those positions whose work does not match the statutory descriptions listed below. We recommend you exclude these positions or investments entirely from your response. For example, transportation and early childhood education are outside the scope of EBF and will not align with Adequacy Target investments so should not be included in your responses. Additionally, we have included two investment categories, debt repayment and social-
emotional wellness, which are not a part of the EBF Adequacy Target but two categories we are interested in learning more about. Similarly, the EIS and AFR codes listed below are not directly linked to the EBF Cost Factors so should be merely used as additional guidance as needed. EIS codes and position names are listed below.

1. Were you in this role in SY 2017-18 and SY 2018-19?
a. If not, who was?

For Part 1, please complete the following table by providing full-time equivalencies ($\mathbf{1 . 0}=$ one full time employee) of people who were employed at your school during each of the school years in question (2017-18 and 2018-19).

Position / Investment	EBF Definition	Grade Span	2017-18 School Year	2018-19 School Year
	```"Regular classroom teacher in elementary schools and teachers of a core subject in middle and high schools." EIS Code 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 250, 251, 308, 601, 602, 603, 604, 605, 606, 608, 609, 611, 699```	K-3		
Core Teachers		4-12		
	"Teacher who provides instruction in subject areas not included in core subjects, including, but not limited to, art, music, physical education, health, driver education, career-technical education, and such other subject areas as may be mandated by State law or provided by an Organizational Unit." EIS Code 601, 608, 208	K-8		
Specialist Teacher		9-12		
Instructional Facilitator	"A qualified teacher or licensed teacher leader who facilitates and coaches continuous improvement in classroom instruction; provides instructional support to teachers in the elements of research-based instruction or demonstrates the alignment of instruction with curriculum standards and assessment tools; develops or coordinates instructional programs or strategies; develops and implements training; chooses standards-based instructional materials; provides teachers with an understanding of	All		




Full Time Equivalencies (FTE) Open Response: What are the top two school investments priorities your school made regarding full-time equivalencies using evidence-based formula funds? Please explain.

For part 2 of this survey, please indicate the total dollars spent for each of the following per student investment categories during the two school years (2017-18 and 2018-19). Please note that we are asking you to report total dollars spent, including EBF. There is no need to calculate per-student costs.

Investment	EBF Definition	Grade   Span	2017-18   School   Year	2018-19   School   Year
	"A child shall be considered gifted and   talented in any area of aptitude, and,   specifically, in language arts and   mathematics, by scoring in the top 5\%   locally in that area of aptitude."   AFR- 1650	K-12		



	Municipal Retirement Fund employer   contributions."			
Debt Repayment		PK-12		
Social-Emotional Wellness		PK-12		
Other:				

Per-Student Investment Open Response: What are the top two district investments priorities your district made regarding per-student investments using evidence-based formula funds? Please explain.

For Part 3, please complete the following table by providing full-time equivalencies (1.0 = one full time employee) of people who were employed at your school during each of the school years in question (2017-18 and 2018-19).

Definitions for additional investments:
Intervention Teacher- A (tutor) means a licensed teacher providing one-on-one or small group tutoring to students struggling to meet proficiency in core subjects.

Pupil Support- Means a nurse, psychologist, social worker, family liaison personnel, or other staff member who provides support to at-risk or struggling students.

Extended Day Teacher: 'Extended day' means academic and enrichment programs provided to students outside the regular school day before and after school or during non-instructional times during the school day.

Summer School Teacher: 'Summer school' means academic and enrichment programs provided to students during the summer months outside of the regular school year.

Student   Sub   Group	Investment	EBF Definition	Grade   Span	2017-18   School   Year	2018-19   School   Year
Low-   Income	Intervention   Teacher	"One FTE intervention teacher   (tutor) position for every 125 Low-   Income Count students"	$P K-12$		
	"One FTE intervention teacher				
Pupil Support	(tutor) position for every 125 Low-   Income Count students"	$P K-12$			
	"One FTE pupil support position for   every 120 Low-Income Count   students"	$P K-12$			


English Learner	Intervention Teacher	"One FTE intervention teacher (tutor) position for every 125 English learner students"	PK - 12		
	Pupil Support	"One FTE pupil support staff position for every 125 English learner students"	PK - 12		
	Extended Day Teacher	"One FTE extended day teacher position for every 120 English learner students"	PK - 12		
	Summer School   Teacher	"One FTE summer school teacher position for every 120 English learner students"	PK - 12		
	English Learner Core Teacher	"One FTE core teacher position for every 100 English learner students. EIS Code 202, 203	PK - 12		
Special   Education	Special Education Teacher	EIS Code 250	PK - 12		
	Instructional Assistant	"a core or special education, nonlicensed employee who assists a teacher in the classroom and provides academic support to students." EIS Code 310	PK - 12		
	Psychologist	EIS Code 377	PK - 12		

Additional Per-Student Investment Open Response: What are the top two district investments priorities your district made regarding additional per-student investments (low-income, English Learner, Special Education) using EBF funds?

Thank you for participating in this survey! We appreciate your responses.

## EIS Codes

Core Teacher: Teacher (200), Reading Teacher (201), Bilingual Education Teacher (202), English as a Second Language Teacher (203), Visiting International Teacher (204), Speech Language Pathology Teacher (207), Career and Technical Educator (208), Special Education Teacher (250), Bilingual Special Education Teacher (251), Resource Teacher Arts (Visual Art, Music, Drama, and Theater) (601), Resource Teacher History (602), Resource Teacher Government/Political Science (603), Resource Teacher English/Language Arts (604), Resource Teacher Reading (605), Resource Teacher Math (606), Resource Teacher Science (607), Resource Teacher Foreign Language (608), Resource Teacher Economics (609), Resource Teacher Elementary (610), Research Teacher Other (611), Citywide Resource Teacher- CPS ONLY (699)

Guidance Counselor: 372
Social Worker: 379
School Psychologist: 377
Librarian/Media Specialist: 309

School Nurse: 374
Principal: 103
Assistant Principal: 104

## Appendix H

## District Administrator Interview Questions

## Background

1. What is your name and position?
a. How long have you been in this role?

## Planning

2. Please describe the process of how your district decided to allocate new tier funding in each year your district received EBF funds.
a. If the participant does not address subgroup (e.g., SES, race, IEP, English learner, etc.):
"To what extent did you use research and/or student-level data to make your decisions?"
3. How did your district choose to prioritize certain EBF cost factors?
a. What school-level variables were considered?

## Implementation

4. What supports, with EBF in mind or outside of EBF cost factors, were implemented at the district level that facilitated a foundation for successful change at the school level?
a. If the participant needs more guidance: "You might consider district-wide curriculum, leadership, staffing, etc."

## Challenges

5. In general, what were the challenges to district-level systemic and organizational change?
6. Were there challenges to spending the additional EBF funds as planned? If so, please elaborate.

## COVID-19 Challenges

7. How, if at all, did the COVID-19 pandemic change the way that your district approached resource allocation?
a. How did the pandemic impact your thinking about EBF cost factors during the planning and implementation phases?
b. If time permits or not addressed: "If your district shifted its practices, do you think these challenges will be isolated to the pandemic or permanent changes?"

## Delayed Funding

8. How, if at all, did the lack of new tier funding during FY 2020-21 change the way your district views EBF funding?
a. What, if any, additional challenges to district-level systemic and organizational change did this present?
b. What, if any, were the effects on student outcomes?

## Additional Questions

9. What, if any, district-level factors outside of the EBF formula affected school-level student outcomes?
10. What else is important to share that we haven't asked about?

## Principal Interview Questions

## Background

1. What is your name and position?
a. How long have you been in this role?

## Planning

2. Please describe the process of how you and/or other administrators at your school, decided to allocate new tier funding from EBF in SY 2017-18 and SY 2018-19.
a. If the participant does not address subgroups (e.g., SES, race, IEP, English learner, etc.):
"To what extent did you use research and/or student-level data to make your decisions?"
3. How did your school choose to prioritize certain EBF cost factors?
a. How, if at all, were the needs of targeted student subgroups (EL, IEP, Low-income) targeted in your resource allocation decisions?

## Implementation

4. What supports, with EBF in mind or outside of EBF cost factors, were implemented at the school level that facilitated a foundation for successful change at the school level?
a. If the participant needs more guidance: "You may consider school-wide curriculum, leadership, staffing, etc."

## Challenges

5. In general, what were the challenges to school-level systemic and organizational change?
6. Were there challenges to spending the additional EBF funds as planned? If so, please elaborate.

## COVID-19 Challenges

7. How, if at all, did the COVID-19 pandemic change the way that your school approached resource allocation?
a. How did the pandemic impact your thinking about EBF cost factors during the planning and implementation phases?
b. If time permits or not addressed: "If your district shifted its practices, do you think these challenges will be isolated to the pandemic or permanent changes?"

## Delayed Funding

8. How, if at all, did the lack of new tier funding during FY 2020-21 change the way your school views EBF funding?
a. What, if any, additional challenges to school-level systemic and organizational change did this present?
b. What, if any, were the effects on student outcomes?

## Additional Questions

9. What, if any, school-level factors outside of the EBF formula affected school-level student outcomes?
10. What else is important to share that we haven't asked about?

## Appendix I

## Educator Focus Group Questions

## Background

1. Can each participant state your name and current position?

## Planning

2. To what extent did you use research and/or student-level data to make your instructional decisions?
a. How were targeted student groups included in your instruction decisions (for example, SES, race, IEP, English learner, etc.)?
3. What type of involvement did you have in making decisions about school-based or district-based budgets?
a. Are you aware of these Evidence-Based Funding cost-factors and how your district prioritized local spending/allocations? Please elaborate.

## Implementation

4. In your experience as an educator, have you seen any changes impacting the classroom and your day-to-day work with students? (i.e., supplies/resources, additional support services for students, schedules, etc.)
5. Looking at the district survey again, are there any resource allocation decisions that surprised you?

## Challenges

6. What were the challenges to school-level systemic and organizational change?
a. To what extent has your school or district included teachers, paraprofessionals, and your local unions in addressing these challenges?

## COVID-19 Challenges

7. To what extent did your school or district support the school community during COVID?
8. To what extent did changes in funding or resource allocation due to the pandemic affect your daily instruction and work with students?

## Delayed Funding

9. Did you notice a difference in resource allocation and supports between SY 2020-21 and SY 2019-20?
a. In your experience, how did this impact school-level systemic and organizational change?
b. Do you feel as though these differences in allocations and supports had any effect, direct or indirect, on student outcomes?
c. Do you think that these differences in student outcomes were due to changes in resource allocation or the ongoing pandemic?

## Closing

10. What, if any, school-level factors outside of the EBF formula affected school-level student outcomes?
11. What else is important to share that we haven't asked about?

## Appendix J

## Coding Dictionary

Code   RQ 0 - Pre-EBF Conditions	Subcodes
Pre-EBF Conditions	Staffing cuts, layoffs
	Financial distress, debt
	Unfilled positions
	Outdated materials

## Definition

Staff reductions (sometimes short-handed as "RIFs", or "reductions in force") or layoffs within the district prior to EBF
Mention of district being "in the red," struggling financially, or being in debt as a result of pre-EBF conditions, including underfunding in general and proration or cuts to state funding specifically Not explicitly cuts or layoffs, but lack of ability to fill staff positions within the district; can include references to vacancies and/or inability to replace staff who retire or resign
Materials or physical conditions within classrooms, schools, or the district that were old, out of date, inadequate, etc.

RQ 3 - District Use of EBF Funds

Process for Allocating EBF Funds	Community engagement/input	Advisory Groups, Board, Parent Input	Engagement or solicitation of input from members of the school community beyond district leadership/administration to determine school/district priorities and how funds should be spent
	District leaders drive decision making	Superintendent and Board	Mention of district level leaders, including the district superintendent, school board, or district administrators, setting strategic priorities and determining how best to spend EBF funds
	Lack of knowledge about EBF/elements		Expression of little/no familiarity with specifics of EBF elements or knowledge of extent to which these played a role in district's spending decisions
	Membership organization	Union, LSC, IASA, IPA, IEA, IFT	Membership in, engagement with, or communication from management organization was a source of information about EBF and evidence-based spending practices
	School based collaboration and Discussion		Engagement or solicitation of input from school and district staff (teachers, counselors, etc.) to identify areas for improvement and set priorities for spending EBF funds
Variables and Information Used to Prioritize Investments	Student academic outcome data		Test scores (state summative tests or otherwise), proficiency and growth rates, graduation rates, or any other data related to student academic achievement
	Research/EBF model as foundational for decisionmaking	Cost factor list informs investment	Studies/research related to EBF and list of evidence-based cost factors/elements was mentioned as tool for guiding or informing spending

EBF Cost Factors, Staffing/Hiring

District needs assessment   data	District tool for local "needs assessment" provided information used to inform EBF spending
1. Core Teachers	A regular classroom teacher in elementary schools and teachers of a core subject in middle and   high schools
	A teacher who provides instruction in subject areas not included in core subjects, including, but not   limited to, art, music, physical education, health, driver education, career-technical education, and   such other subject areas as may be mandated by State law or provided by an Organizational Unit
	A qualified teacher or licensed teacher leader who facilitates and coaches continuous improvement   in classroom instruction; provides instructional support to teachers in the elements of research-   based instruction or demonstrates the alignment of instruction with curriculum standards and   assessment tools; develops or coordinates instructional programs or strategies; develops and   implements training; chooses SB1947 Enrolled LRB100 o9675 MLM 19844 b Public Act 100-0465
standards-based instructional materials; provides teachers with an understanding of current	
research; serves as a mentor, site coach, curriculum specialist, or lead teacher; or otherwise works	
with fellow teachers, in collaboration, to use data to improve instructional practice or develop	
model lessons	


12. Substitute Teachers		another staff member
13. Gifted		A child shall be considered gifted and talented in any area of aptitude, and, specifically, in language arts and mathematics, by scoring in the top $5 \%$ locally in that area of aptitude.
14. Professional Development		Training programs for licensed staff in schools, including, but not limited to, programs that assist in implementing new curriculum programs, provide data focused or academic assessment data training to help staff identify a student's weaknesses and strengths, target interventions, improve instruction, encompass instructional strategies for English learner, gifted, or at-risk students, address inclusivity, cultural sensitivity, or implicit bias, or otherwise provide professional support for licensed staff
15. Instructional Material	Curriculum, standardsbased curriculum, core curriculum (reading and math), instructional model	Relevant instructional materials for student instruction, including, but not limited to, textbooks, consumable workbooks, laboratory equipment, library books, and other similar materials
16. Assessments		Any of those benchmark, progress monitoring, formative, diagnostic, and other assessments, in addition to the State accountability assessment, that assist teachers' needs in understanding the skills and meeting the needs of the students they serve
17. Computer/Tech Equipment		Computers, servers, notebooks, network equipment, copiers, printers, instructional software, security software, curriculum management courseware, and other similar materials and equipment
18. Student Activities		Non-credit producing after-school programs, including, but not limited to, clubs, bands, sports, and other activities authorized by the school board of the Organizational Unit
19. Operations \& Maintenance		Custodial services, facility and ground maintenance, facility operations, facility security, routine facility repairs, and other similar services and functions
20. Central Office		Individual administrators and support service personnel charged with managing the instructional programs, business and operations, and security of the Organizational Unit
21. Employee Benefits (\% of Salary)		Health, dental, and vision insurance offered to employees of an Organizational Unit, the costs associated with statutorily required payment of the normal cost of the Organizational Unit's teacher pensions, Social Security employer contributions, and Illinois Municipal Retirement Fund employer contributions
22. Employee Benefits (Central Office, Maintenance \& Operations, and Normal Pension Costs)		

EBF Cost Factors, High Need Subgroup Investments

## Non-Cost Factor

 InvestmentsDecrease in Cost Factor Investment
23. Intervention Teacher

A nurse, psychologist, social worker, family liaison personnel, or other staff member who provides
24. Pupil Support support to at-risk or struggling students
25. Extended Day Academic and enrichment programs provided to students outside the regular school day before Teacher and after school or during non-instructional times during the school day
26. Summer School Academic and enrichment programs provided to students during the summer months outside of Teacher the regular school year
27. Intervention Teacher
28. Pupil Support
29. Extended Day
29. Extended Day
Teacher See \#25 above

30. Summer School	
Teacher	
$l$	

31. English Learner Core

Teacher
32. Special Education

Teacher
33. Instructional A core or special education, non-licensed employee who assists a teacher in the classroom and Assistant provides academic support to students

## 34. Psychologist

Investments related to supporting students' Social Emotional Learning (SEL), including direct mention of SEL as well as reference to related competencies such as interpersonal skills, empathy, etc.
Investments in the creation or improvement of facilities; acquisition of fixed assets or additions to fixed assets

Investments to address student needs related to mental health, exposure to trauma or moving toward trauma-responsive school environment, etc.

Discussion of a decrease in one of the cost factors

RQ 4 - Systemic and Organizational Changes that Contributed to Improvement in Student Performance and Decrease of Opportunity Gaps
Standards-based, SEL, Core
Implementing high (Reading and Math),
quality curriculum
Instructional model
Change in curriculum used at the school level (adoption of new curriculum, alignment or improvement of curriculum)

Prioritizing Professional Development	Mentorship, Instructional support	Investment in training and/or embedded or ongoing professional development for staff members, including mentorship \& induction and instructional coaching
Logistics - Adjusting Building Schedules	Additional Courses	Administrative/bureaucratic/logistical changes to the management of school time or processes
Progress Monitoring	RTI	Use of tools, systems, protocols to monitor progress, including setting goals, identifying metrics to evaluate progress, and measuring improvement over time
Consistent Staffing		Decrease in turnover, consistency in keeping positions filled, staffing remaining consistent in a building or district
Additional Staff	CF - Instructional Coach, Interventionist, Guidance Counselor, Social Worker, SEL, Administrative, Aids OR (Instructional, Noninstructional, Administrative, Maintenance)	Hiring or adding additional staff members, filling vacancies, fewer open positions
Student Staff Ratios	Small group instruction, class Size, distributed workload	Reduction of class sizes, decrease in student to staff ratios, more opportunity for individualized attention
Increased Tech		Updating of technology within school buildings or district, moving to 1:1 technology, trainings or professional development in using technology for instruction/student supports
Capital Investments		Investments in the creation or improvement of facilities; acquisition of fixed assets or additions to fixed assets
Data-informed decisionmaking	Student-level, district-wide	Use of data/information, either quantitative or qualitative, to intentionally gain understanding and inform decision-making
Contract Negotiations	Teacher salaries	Changes related to teacher/educator contracts, including length of contract, bargaining, increases in salary, etc.
School Culture Change/Shift	Teacher buy-in, trust, collaboration	Changes in school climate/culture, mindset shift and/or changes in practices and processes relating to overall environment and approach to education within a school/district
Management Style Change		Focus on change in leadership or leadership approach, adjustment to management style, practices, focus or priorities

RQ 5 - Impacts of COVID/Delayed Funding on EBF Implementation and District Conditions
Overall Effect of EBF on
Provided
Districts
predictability/financial
Mention of EBF as a source of stability, consistency, predictability of state funding or resources stability Base-funding minimum made available to school districts


Additional ESSER/CARES masked lack of EBF Dollars

Presence of federal relief funds in the form of ESSER and CARES made it difficult to ascertain the impact of no new EBF state funds in FY21 Lack of funding created sense of fear, nervousness, mistrust that formula would be funded in the future, brought back concerns about proration

Fear/nervous
Presumed funding continuity

## Appendix K

## Frequency Tables for Qualitative Analysis

Table 40
Frequency table of pattern codes for RQ 3 from transcripts

Cost Factor Patterns	Total	District Admin	Principal	Educator
RQ 3 - Process for Allocating EBF Funds				
Community Engagement_Input	13	8	3	2
District leaders drive decision making	27	15	3	9
Lack of knowledge about EBF_Elements	7	0	0	7
Membership Organization	6	2	0	4
School based collaboration and discussion	35	15	7	13
RQ 3 - Variables and Info Used to Prioritize				
Investments				
District Needs Assessment	21	19	1	1
Research_EBF Model as foundational for	29	24	4	1
decision making	36	18	10	8
Student Academic outcome data	2	0	2	0
Student Demographics				

Table 41
Frequency table of pattern codes for Core Investment EBF Cost Factors from transcripts

Cost Factor Codes	Total	District Admin	Principal	Educator
Instructional Facilitators	31	17	5	9
Core Teachers	29	16	5	8
Core Intervention Teachers	19	10	4	5
Social Worker	19	13	2	4
Specialist Teachers	15	6	6	3
General _Pupil Support Staff	7	5	1	1
Substitute Teachers	7	4	0	3
Guidance Counselor	6	5	0	1
Principal \& Assistant Principal	5	4	1	0
School Site Staff	5	4	0	1
EBF Cost Factors	2	1	1	0
Guidance Counselor_Pandemic	2	0	0	2
Nurse	2	1	0	1
Librarian Aide_Media Tech	1	1	0	0
School Site Staff_Pandemic	1	1	0	0
Supervisory Aide	1	1	0	0
Librarian	0	0	0	0

Table 42
Frequency and percent of the Core Investment EBF Cost Factors from SY 2017-18 to SY 2018-19 per digital survey

Cost Factor	Increase (n)	Increase (\%)	Decrease   (n)	Decrease   (\%)	No Change (n)	No Change (\%)	No   Response   (n)	No Response $(\%)$
Core Teacher K-3	13	35.1\%	2	5.4\%	14	37.8\%	8	21.6\%
Core Teacher 4-12	12	32.4\%	2	5.4\%	19	51.4\%	4	10.8\%
Specialist Teacher K-8	12	32.4\%	2	5.4\%	17	45.9\%	6	16.2\%
Instructional Facilitators	10	27.0\%	1	2.7\%	10	27.0\%	16	43.2\%
Other 1	9	24.3\%	1	2.7\%	10	27.0\%	17	45.9\%
Supervisory Aide K-5	8	21.6\%	1	2.7\%	15	40.5\%	13	35.1\%
Specialist Teacher 9-12	6	16.2\%	0	0.0\%	6	16.2\%	25	67.6\%
Core Intervention Teacher PK-5	6	16.2\%	0	0.0\%	12	32.4\%	19	51.4\%
Substitute Teachers	5	13.5\%	3	8.1\%	8	21.6\%	21	56.8\%
Other 2	5	13.5\%	0	0.0\%	1	2.7\%	31	83.8\%
Guidance Counselors PK-5	4	10.8\%	0	0.0\%	19	51.4\%	14	37.8\%
Guidance Counselors 6-8	4	10.8\%	0	0.0\%	7	18.9\%	26	70.3\%
Supervisory Aide 6-8	4	10.8\%	0	0.0\%	8	21.6\%	25	67.6\%
Supervisory Aide 9-12	4	10.8\%	1	2.7\%	5	13.5\%	27	73.0\%
School Site Staff 9-12	3	8.1\%	0	0.0\%	8	21.6\%	26	70.3\%
Assistant Principal PK-5	2	5.4\%	1	2.7\%	19	51.4\%	15	40.5\%
Guidance Counselors 9-12	1	2.7\%	1	2.7\%	9	24.3\%	26	70.3\%
Principal PK-5	1	2.7\%	0	0.0\%	27	73.0\%	9	24.3\%
Principal 6-8	1	2.7\%	0	0.0\%	13	35.1\%	23	62.2\%
School Site Staff 6-8	1	2.7\%	1	2.7\%	12	32.4\%	23	62.2\%
Core Intervention Teacher 6-8	0	0.0\%	0	0.0\%	12	32.4\%	25	67.6\%
Core Intervention Teacher 9-12	0	0.0\%	0	0.0\%	8	21.6\%	29	78.4\%
Nurse K-5	0	0.0\%	0	0.0\%	18	48.6\%	19	51.4\%
Nurse 6-8	0	0.0\%	0	0.0\%	11	29.7\%	26	70.3\%

$\left.\begin{array}{|ccccccccc|}\hline \text { Cost Factor } & \text { Increase (n) } & \text { Increase (\%) } & \begin{array}{c}\text { Decrease } \\ \text { (n) }\end{array} & \begin{array}{c}\text { Decrease } \\ \text { (\%) }\end{array} & \text { No Change (n) } & \begin{array}{c}\text { No Change (\%) } \\ \text { Response } \\ \text { (n) }\end{array} \\ \hline \text { Nurse 9-12 } & 0 & 0.0 \% & 0 & 0.0 \% & 8 & 21.6 \% \\ (\%)\end{array}\right]$

Table 43
Frequency table of pattern codes for Per-Student Investment EBF Cost Factors from transcripts

Cost Factor Codes	Total	District Admin	Principal	Educator
Instructional Material	51	33	6	12
Computer_Tech Equipment	42	19	6	17
Professional Development	33	18	4	11
Computer_Tech_Pandemic	21	9	1	11
Assessments	14	9	0	5
Non Cost Factor Investments_SEL	12	7	4	1
Operations \& Maintenance	12	9	0	3
Student Activities	8	0	2	6
Central Office	6	5	0	1
Non Cost Factor Investments_Mental health \&	6	4	2	0
wellbeing, trauma	6	3	2	0
Employee Benefits (\% of Salary)	5	3	2	0
Gifted	5	1	0	3
Instructional Material_Pandemic	4	1	0	3
Non Cost Factor Investments_Capital	4	1	1	0
Investments	2	2	0	0
EBF Cost Factors	2	2	0	0
Employee Benefits (Central Office, Pension	Costs)	2	1	0
Non Cost Factor Investments	1		0	
Operations \& Maintenance_Pandemic			0	

Table 44
Frequency and percent of the Per-Student Investment EBF Cost Factors from SY 2017-18 to SY 2018-19 per digital survey

Cost Factor	Increase (n)	Increase (\%)	Decrease   (n)	Decrease (\%)	No Change   (n)	No Change (\%)	No Response   (n)	No Response $(\%)$
Benefits	23	62.2\%	2	5.4\%	2	5.4\%	10	27.0\%
Professional Development	22	59.5\%	6	16.2\%	3	8.1\%	6	16.2\%
Central Office	22	59.5\%	8	21.6\%	4	10.8\%	3	8.1\%
Instructional Materials	21	56.8\%	5	13.5\%	0	0.0\%	11	29.7\%
Maintenance and Operations	19	51.4\%	11	29.7\%	3	8.1\%	4	10.8\%
Technology and Computers	15	40.5\%	6	16.2\%	3	8.1\%	13	35.1\%
Assessments	13	35.1\%	9	24.3\%	6	16.2\%	9	24.3\%
Social Emotional Wellness	13	35.1\%	2	5.4\%	5	13.5\%	17	45.9\%
Debt	12	32.4\%	1	2.7\%	7	18.9\%	17	45.9\%
Student Activities 6-8	9	24.3\%	4	10.8\%	4	10.8\%	20	54.1\%
Other	8	21.6\%	0	0.0\%	3	8.1\%	26	70.3\%
Student Activities PK-5	6	16.2\%	3	8.1\%	7	18.9\%	21	56.8\%
Student Activities 9-12	5	13.5\%	2	5.4\%	4	10.8\%	26	70.3\%
Gifted	4	10.8\%	5	13.5\%	10	27.0\%	18	48.6\%

Table 45
Frequency table of pattern codes for Additional Investment EBF Cost Factors from transcripts

Cost Factor Codes	Total	District   Admin	Principal	Educator
EBF Cost Factors	2	1	1	0
English Learner Parent Cod	8	7	0	1
English Learner Core Teacher	2	1	0	1
English Learner Extended Day Teacher	0	0	0	0
English Learner Intervention Teacher	3	0	3	0
English Learner Pupil Support	1	1	0	0
English Learner Summer School	0	0	0	0
Teacher	3	2	1	0
Low-Income Parent Code	3	0	0	3
Low-Income_Extended Day Teacher	2	2	0	0
Low-Income_Intervention Teacher	2	2	0	0
Low-Income_Pupil Support	1	0	0	1
Low-Income_Summer School Teacher	19	13	2	4
Social Worker	4	2	0	2
Special Education Parent Code	2	1	0	1
Special Education_Instructional	1	1	0	0
Assistant	7	4	2	1
Special Education_Psychologist	1			
Special Education_Teacher		2	0	0

Table 46
Frequency and percent of the Additional Investment EBF Cost Factors from SY 2017-18 to SY 2018-19 per digital survey

Cost Factor	Increase (n)	Increase (\%)	Decrease   (n)	Decrease   (\%)	No Change   (n)	No Change (\%)	No   Response   (n)	No Response (\%)
Low-Income Intervention Teacher	9	24.3\%	0	0.0\%	10	27.0\%	18	48.6\%
Low-Income Pupil Support Staff	9	24.3\%	0	0.0\%	19	51.4\%	9	24.3\%
Low-Income Extended Day Teacher	2	5.4\%	2	5.4\%	13	35.1\%	20	54.1\%
Low-Income Summer School Teacher	3	8.1\%	0	0.0\%	13	35.1\%	21	56.8\%
EL Intervention Teacher	6	16.2\%	0	0.0\%	8	21.6\%	23	62.2\%
EL Pupil Support Staff	8	21.6\%	0	0.0\%	9	24.3\%	20	54.1\%
EL Extended Day Teacher	1	2.7\%	0	0.0\%	13	35.1\%	23	62.2\%
EL Summer School Teacher	3	8.1\%	0	0.0\%	8	21.6\%	26	70.3\%
EL Core Teacher	7	18.9\%	2	5.4\%	9	24.3\%	19	51.4\%
Special Education Teacher	15	40.5\%	1	2.7\%	18	48.6\%	3	8.1\%
Special Education Instructional Assistant	16	43.2\%	3	8.1\%	13	35.1\%	5	13.5\%
Psychologist	0	0.0\%	1	2.7\%	18	48.6\%	18	48.6\%

Table 47
Frequency table of pattern codes for Research Question 4 from transcripts

Pattern Code	Total	District Admin	Principal	Educator
Additional Staff	49	25	11	13
Prioritizing Professional Development	27	15	3	9
School Culture Change_Shift	26	17	5	4
Student Staff Ratios_Class Size	21	12	4	5
Implementing High Quality Curriculum_ Core   (Reading and Math)	18	6	4	8
Progress Monitoring	17	4	4	9
Implementing High Quality Curriculum	12	4	5	3
Increased Tech	12	5	1	6
Data-informed decision-making	11	6	0	5
Logistics - Adjusting Building Schedules	11	2	4	5
Management Style Change	7	6	0	1
Capital Investments	5	2	0	3
Implementing High Quality Curriculum_SEL	5	3	1	1
Student Staff Ratios_Distributed Work Load	5	3	1	1
Student Staff Ratios_Small Group Instruction	5	3	0	2
Consistent Staffing	4	4	0	0
RQ 4 - Systemic and Organizational Changes	3	0	1	2
Implementing High Quality Curriculum_Instructional Model	3	1	2	0
Progress Monitoring_RTI	3	2	0	1
Student Staff Ratios	3	1	0	2
Contract Negotiations	2	2	0	0
Implementing High Quality Curriculum_Standards-based	2	1	0	1

Table 48
Frequency table of pattern codes for $R Q 5$ - Challenges to Progress from transcripts

Pattern Code	Total	District   Admin	Principal	Educator
Staffing	28	17	5	6
RQ 5 - Challenges to Progress	19	9	2	8
Competing Priorities	17	12	4	1
Still below adequacy target	15	14	1	0
Barriers to long-term focus	6	5	1	0
Starting from a point of financial distress	4	4	0	0
Maximize impact of limted funds	2	2	0	0
None	1	0	1	0

Table 49
Frequency table of pattern codes for RQ 5 - Impact of No Tier Funding in FY 21 from transcripts

Pattern Code	Total	District   Admin	Principal	Educator
Cost Factor Planning Disruption	19	16	1	2
No Difference	19	5	6	8
Additional ESSER_CARES Masked Lack of EBF	14	10	1	3
Dollars	13	8	4	1
Undermined Reliability_Sustainability	10	8	0	2
RQ 5 - Impact of No Tier Funding in FY 21	4	4	0	0
Presumed Funding Continuity	3	3	0	0
Concern, Slowed Progress to Adequacy				

Table 50
Frequency table of pattern codes for RQ 5 - Impacts of COVID-19 from transcripts

Pattern Code	Total	District   Admin	Principal	Educator
Increased Tech	60	25	8	27
Instructional Modality Change	40	23	8	9
Mental Health_SEL Supports	24	12	4	8
RQ 5 - Impacts of COVID-19	22	15	3	4
Physical Resources	19	6	3	10
Staff Changes	18	13	2	3
ESSER_CARES Funds	14	8	3	3
Professional Development	14	6	0	8
Focused Priorities	13	12	1	0
Curriculum	6	3	2	1
Fear of wasted resources	4	2	0	2

Table 51
Frequency table of RQ 5 - Overall Effects of EBF on Districts from transcripts

Pattern Code	Total	District   Admin	Principal	Educator
RQ 5 - Overall Effects of EBF on Districts	34	24	5	5
Provided Predictability_Financial Stability	24	23	1	1
More Prepared for Crisis (COVID-19)	17	13	1	3
Allowed for long-term investments	13	12	1	0
District Culture	10	10	0	0
Replace Cut Positions	9	7	1	1
Reversed Historical Inequities	5	5	0	0


[^0]:    ${ }^{1}$ This analysis includes FYs 2018, 2019, 2020, and 2022; 2021 is not included in the analysis because school districts did not receive tier designations that year.

[^1]:    ${ }^{2}$ The Illinois School Finance Adequacy Task Force and a collaborative study by a group of school leaders provided a set of research summaries that were used in the development of EBF. The summaries provided research on effect size pertaining to the cost factors from a variety of nationwide studies.

[^2]:    ${ }^{3}$ See Evidence-Based Funding Distribution Technical Guide for additional details.

[^3]:    ${ }^{4}$ Often referred to as The Coleman Report.

[^4]:    ${ }^{5}$ Local resources are primarily based on Corporate Personal Property Replacement Tax revenue, Equalized Assessed Value, and past funding amounts.

[^5]:    ${ }^{6}$ The target ratios of adequacy level for Tier 1 were as follows: FY $18<64.56 \%$, FY $19<69.55 \%$, FY $20<$ $67.36 \%$, and FY $22<68.48 \%$. For example, in FY 2020 Tier $1<67.4 \%, 67.4 \% \leq$ Tier $2<90.0 \%, 90.0 \% \leq$ Tier $3 \leq$ $100.0 \%$, and Tier $4>100.0 \%$.

[^6]:    ${ }^{7}$ The Organisation for Economic Co-Operation and Development (2008) defined equity as fairness and inclusion. Equity is not synonymous with equality; equity gives each student what they need to perform at an acceptable level, whereas equality gives every student the same. In this context, Odden et al. (2010) defined adequacy as the amount of funding required to educate every child up to the state's education performance standards.
    ${ }^{8}$ Biasi's (2019) work named additional examples of educational inputs and intermediate outcomes; however, increased teaching staff and college enrollment were the foci for statistical analysis performed for and reported in this study.

[^7]:    ${ }^{9}$ Atchison (2017) defines vertical equity as the distribution of funding according to poverty levels. For example, districts with higher poverty levels are given more money than districts with low poverty levels. Horizontal equity refers to the degree of disparity in funding levels across districts (i.e., the difference in funding between the highest and lowest quartile of districts; Atchison, 2017).

[^8]:    ${ }^{10}$ Beginning in FY 2020, Property Tax Relief Grants received in a prior fiscal year have been added to the BFM for applicable districts. Beginning in FY 2022, District Intervention funds have been added to the BFM for applicable districts.
    ${ }^{11}$ See explanatory documents, webinars, and funding calculations and the Evidence-Based Funding Distribution Technical Guide.
    ${ }^{12}$ The terms "essential elements" and "cost factors" are used interchangeably in this report.

[^9]:    ${ }^{13}$ See Appendix A for a full list of the cost factors.
    ${ }^{14}$ The target ratios of adequacy level for Tier 1 were as follows: FY $18<64.56 \%$, FY $19<69.55 \%$, FY $20<$ $67.36 \%$, and FY $22<68.48 \%$. For example, in FY 2020 Tier $1<67.4 \%, 67.4 \% \leq$ Tier $2<90.0 \%, 90.0 \% \leq$ Tier $3 \leq$ $100.0 \%$, and Tier $4>100.0 \%$.

[^10]:    ${ }^{15}$ More information on the coding errors and next steps can be found on the ISBE website.

[^11]:    ${ }^{16}$ Parts of this analysis will not change from the Year 1 report, as we do not have any new student achievement measures due to the COVID-19 pandemic. Academic behavior indicators will also be influenced by the pandemic.

[^12]:    ${ }^{17}$ The normal funding schedule includes a total of 22 payments distributed August through June.
    ${ }^{18}$ Illinois Report Cards are accessible from on the Report Card Data Library webpage. EBF Quick Facts are published under the "Reports" section of the EBF Funding Distribution Calculation webpage.

[^13]:    ${ }^{19}$ This data will not be available for SY 2019-20 and is delayed for SY 2020-21. (See the Data Limitations section on the next page for further explanation.)
    ${ }^{20}$ This data will be influenced by the COVID-19 pandemic for SY 2019-20 and SY 2020-21. (See the Data Limitations section for further explanation.)

[^14]:    ${ }^{21}$ See research regarding lagging indicators (Baron, 2019; Kreisman \& Steinber, 2019; Rauscher, 2019).

[^15]:    ${ }^{22}$ This analysis includes FYs 2018, 2019, 2020, and 2022; 2021 is not included in the analysis because school districts did not receive tier designations that year.

[^16]:    ${ }^{23}$ This analysis includes FYs 2018, 2019, 2020, and 2022; 2021 is not included in the analysis because school districts did not receive tier designations that year.

[^17]:    ${ }^{24}$ This analysis includes FYs 2018, 2019, 2020, and 2022; 2021 is not included in the analysis because school districts did not receive tier designations that year.

[^18]:    ${ }^{25}$ This analysis includes FYs 2018, 2019, 2020, and 2022; 2021 is not included in the analysis because school districts did not receive tier designations that year.
    ${ }^{26}$ This analysis includes FYs 2018, 2019, 2020, and 2022; 2021 is not included in the analysis because school districts did not receive tier designations that year.

[^19]:    ${ }^{27}$ The quintile breakdown according to the percent low income is as follows:

    |  | FY 2018 |  | FY 2019 |  | FY 2020 |  | FY 2022 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Quintile | Min | Max | Min | Max | Min | Max | Min | Max |
    | 1 | $1.5 \%$ | $19.4 \%$ | $0.8 \%$ | $19.5 \%$ | $0.6 \%$ | $19.1 \%$ | $0.4 \%$ | $18.4 \%$ |
    | 2 | $19.5 \%$ | $32.8 \%$ | $19.6 \%$ | $33.7 \%$ | $19.2 \%$ | $32.5 \%$ | $18.7 \%$ | $32.6 \%$ |
    | 3 | $32.9 \%$ | $48.7 \%$ | $33.8 \%$ | $49.6 \%$ | $32.6 \%$ | $49.0 \%$ | $32.6 \%$ | $48.2 \%$ |
    | 4 | $48.7 \%$ | $62.3 \%$ | $49.7 \%$ | $62.2 \%$ | $49.2 \%$ | $61.3 \%$ | $48.3 \%$ | $59.6 \%$ |
    | 5 | $62.4 \%$ | $100.0 \%$ | $62.3 \%$ | $100.0 \%$ | $61.4 \%$ | $100.0 \%$ | $59.8 \%$ | $100.0 \%$ |

[^20]:    ${ }^{28}$ The quintile breakdown according to the per pupil EAV is as follows:

    |  | FY 2018 |  | FY 2019 |  | FY 2020 |  | FY 2022 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Quintile | Min | Max | Min | Max | Min | Max | Min | Max |
    | 1 | 315,569 | $1,913,001$ | 321,858 | $1,977,062$ | 326,461 | $1,915,273$ | 370,987 | $1,946,631$ |
    | 2 | 189,139 | 314,154 | 193,531 | 319,732 | 200,219 | 325,416 | 227,970 | 370,350 |
    | 3 | 126,132 | 188,453 | 130,797 | 193,354 | 138,645 | 200,102 | 149,932 | 226,577 |
    | 4 | 92,236 | 125,945 | 94,223 | 130,202 | 97,075 | 138,417 | 103,675 | 149,748 |
    | 5 | 16,414 | 92,139 | 16,785 | 93,869 | 17,727 | 96,852 | 19,297 | 103,629 |

[^21]:    ${ }^{29}$ Lab schools are not included in this analysis because they do not receive an adjusted EAV. Therefore, the total amount of new tier funding for each fiscal year in this figure is slightly less than the totals listed earlier in this report. Lab schools received the following amounts of new tier funding each year: \$147,360 (FY 2018); \$135,456 (FY 2019); \$216,626 (FY 2020); \$330,361 (FY 2022).

[^22]:    ${ }^{30}$ Both the EBF and the interview/focus group questions specifically target these subgroups, which could be an added element to the perceived importance of these student groups in the decision-making process.

[^23]:    ${ }^{31}$ See Appendix A for a full list of Core Investments and corresponding ratios or Appendix G, which includes the digital survey and corresponding cost factor definitions. Core Investments include Core Teachers, Specialist Teachers, Instructional Facilitators, Core Intervention Teachers, Guidance Counselor, School Site Staff, Nurse, Supervisory Aide, Librarian, Librarian Aide/Media Tech, Principal and Assistant Principal, and Substitute Teachers.

[^24]:    ${ }^{32}$ See Appendix A for a full list of Per Student Investments and corresponding ratios or Appendix G, which includes the digital survey and corresponding cost factor definitions. The full list of Per Student Investment Cost Factors includes Gifted, Professional Development, Instructional Material, Assessments, Computer/Tech Equipment, Student Activities, Operations \& Maintenance, Central Office, Employee Benefits (\% of Salary), and Employee Benefits (Central Office, Maintenance \& Operations, and Normal Pension Costs).

[^25]:    ${ }^{33}$ See Appendix A for a full list of Additional Investments and corresponding ratios or Appendix G, which includes the digital survey and corresponding cost factor definitions. The full list of Additional Investment Cost Factors includes three groups. Investments for Low-Income students include Intervention Teacher, Pupil Support, Extended Day Teacher. For the English Learner group, it includes Intervention Teachers, Pupil Support, Extended Day Teacher, Summer School Teacher, and English Learner Core Teacher. The Special Education category includes Special Education Teachers, Instructional Assistant, and Psychologist.
    ${ }^{34}$ See Professional Review Panel Ad Hoc Report, which discusses the ways that SEL is embedded in the formula.

[^26]:    ${ }^{35}$ The values listed in this appendix are the current FY 22 values as listed in the FY 22 EBF Calculation file

