SCIENCE HIGH SCHOOL EARTH & SPACE SCIENCE

Theory of Action: Academic standards represent a collective commitment around what students should learn each year. The state assessment asks students to demonstrate their knowledge, skills, and understanding related to these standards using a common measure. The resulting data allows us to see patterns in performance that should guide school and district improvement, helping identify areas of strength and opportunity.

Role of Performance Level Descriptors in Defining Proficiency: Performance level descriptors bridge the state assessment to classroom instruction and the systems of formative assessments that guide local instruction and choices about individual students. *Academic proficiency represents a <u>range</u> of observable student performance characteristics*. There are multiple pathways to proficiency, and students rely upon their strengths differently within that range of performance.

Proficiency and Difficulty: A student's ability to demonstrate proficiency is influenced by the complexity of the texts or stimuli presented, tasks they're asked to complete, and the contexts in which they are engaged. As student performance improves, students are typically able to handle more challenging texts/stimuli, tasks, and contexts, and are able to demonstrate their skills and knowledge more accurately and consistently.

Earth and Space Science Student performance indicates the ability to...

HS-ESS1-1	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to	Identify the sun as a source of energy but may not yet connect this to nuclear fusion or stellar life stages. Attempt to describe solar	Construct basic models showing that the sun generates energy through a process involving atomic interactions. Describe the idea that the sun	Develop accurate models to show that nuclear fusion in the sun's core produces energy that is transferred outward and reaches Earth.	Develop complex models that accurately represent how nuclear fusion reactions in the sun's core release energy throughout its life cycle.
release energy that eventually reaches Earth. SEPs: Developing and using models	processes but may confuse fusion with unrelated phenomena or provide inaccurate details. May not connect scientific	undergoes changes over time but provide incomplete or generalized explanations of its lifespan. Recognize that energy from the	Describe the main stages in the sun's life span, including current hydrogen fusion and future phases like red giant expansion.	Apply evidence from observations of stellar evolution to predict changes in solar energy output over billions of years.
DCI : ESS1.A: The Universe and Its Stars	evidence or models to energy production in the sun. May omit or misrepresent how energy reaches Earth or why the sun's mass and structure matter.	sun affects Earth but may not connect this to nuclear fusion or interior processes. Reference components of models, such as "core" or "heat," with	Use evidence from solar observations to explain how fusion maintains the sun's stability and provides energy to the solar system.	Explain, with precise detail, how the sun's mass influences the type and duration of fusion processes that occur at different stages in its lifespan.
CCCs : Energy and matter; Scale, proportion, and quantity	For example, state that "the sun burns" or "gives off light" without explaining how or why energy is produced inside the sun.	only partial accuracy. For instance, state that "the sun makes energy" without identifying the role of hydrogen	Represent the movement of energy from the core to the surface using labeled diagrams or written models.	Justify the transfer of solar energy to Earth using principles of energy conservation and system modeling. <i>For example, describe how</i>
ACT Integrations: Scientific Investigation, Interpretation of Data		fusion or the process through which energy is released and travels.	For example, explain that in the sun's current stage, hydrogen atoms fuse into helium under high pressure and temperature, releasing light and heat that affect Earth's systems.	hydrogen nuclei fuse to form helium in the sun's core, releasing energy that radiates outward and eventually reaches Earth, influencing atmospheric and climate systems.

HS-ESS1-2	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.	Identify the Big Bang as a theory for the origin of the universe but may not refer to supporting evidence. May provide claims that lack accuracy or confuse light, spectra, or galaxy motion with unrelated ideas.	Describe components of the Big Bang theory but provide limited or incomplete explanations of supporting evidence. Recognize that galaxies are moving apart but struggle to explain how redshift or elemental abundance supports expansion.	Construct explanations of the Big Bang theory using evidence from astronomical observations, such as the redshift of distant galaxies and the distribution of elements like hydrogen and helium. Describe how light spectra provide information about the	Construct detailed explanations of the Big Bang theory by integrating evidence from redshift, cosmic microwave background radiation, and elemental abundance. Analyze data to explain how the motion of galaxies supports the
SEPs: Constructing explanations and designing solutions	May not construct explanations or may misinterpret data related to cosmological evidence.	Attempt to interpret spectral data but misapply or misunderstand key relationships.	motion and composition of celestial bodies. Use reasoning to connect the	expansion of the universe over time. Justify the use of the wave model
DCI: ESS1.A : The Universe and Its Stars	For example, state that the Big Bang "caused stars to explode" or mix up galaxy motion with gravity	For instance, state that galaxies are "spreading out" without linking this to observed spectral	Doppler effect to the idea that the universe is expanding. For example, explain how shifts in	of light and spectral line shifts to support claims about universal origin.
CCCs : Scale, proportion, and quantity; Patterns	in the solar system.	shifts or underlying physics.	light wavelengths indicate that distant galaxies are moving away, supporting the idea of a common origin point.	Evaluate alternative cosmological models and explain why the Big Bang theory is most consistent with current observations.
ACT Integrations: Evaluation of Models/Claims, Interpretation of Data				For example, describe how redshift patterns show galaxies are moving away in all directions, consistent with the rapid expansion from a single point.

1

HS-ESS1-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Communicate scientific	State that stars change over time	Describe that stars produce	Communicate the idea that	Communicate how stars of
ideas about the way	but may not identify element	elements but provide only basic or partial explanations of how this	nuclear fusion in stars creates	different masses undergo fusion
cycle, produce elements.		happens.	stages in a star's life correspond	elements, ending in events such
SEPs: Obtaining,	May make statements that confuse fusion with other processes like fission or chemical	Identify general stages in stellar life cycles but lack detail about	to the formation of different elements.	as supernovae or neutron star mergers.
evaluating, and	reactions.	fusion processes or element	Describe how hydrogen fusion	Compare stellar processes in low-
communicating	Communicate ideas but may lack	production.	leads to helium and, in more	mass vs. high-mass stars using
information.	clear structure, detail, or scientific accuracy.	May use scientific vocabulary inconsistently or inaccurately	creation of heavier elements.	supported claims.
DCI: ESS1.A: The Universe	For example, describe stars as	when providing explanations.	Use appropriate terminology and	Explain how fusion and element
and Its Stars	<i>"burning" and creating heat but omit mention of fusion or specific</i>	For instance, state that "stars make elements" without	sequencing to describe stellar evolution.	production relate to energy transformations and system stability.
CCCs: Energy and matter;	element formation.	specifying when or how in the life	For example, explain that	
Stability and change		cycle those processes occur.	stars through fusion and heavier	For example, describe now d supernova explosion disperses
			elements form during explosive	heavy elements like iron and
ACT Integrations:			events like supernovae.	uranium, enriching interstellar

Scientific Investigation, Evaluation of Models/Claims

matter for future star formation.

HS-ESS1-4	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use mathematical or computational representations to prodict the motion of	Identify that planets orbit the sun but may not explain or model how.	Use simplified equations or models to describe general patterns of planetary motion.	Apply mathematical models to describe and predict the motion of orbiting objects using Newton's	Use mathematical formulas and computational simulations to accurately predict orbital paths and speeds based on mass and
orbiting objects in the solar system.	May make statements that demonstrate a misunderstanding	Recognize that gravity affects orbit but make errors in applying	orbital formulas.	distance.
CER Lister weth sweeting	of gravitational forces or motion relationships.	formulas or interpreting results. Describe orbital motion	Calculate orbital periods or velocities for objects in circular or	Model gravitational interactions between planets, moons, or
and computational	May attempt to use math or representations but may provide	qualitatively without full quantitative support.	Represent gravitational	how forces affect orbital stability.
	inaccurate or unsupported predictions.	For instance, state that "planets move because of gravity" but	relationships between mass, distance, and orbital motion.	Explain variations in orbit shape and speed using Kepler's laws and
the Solar System	For example, suggest that heavier planets move faster or that	provide an incorrect or incomplete model of how or why the motion	For example, use the formula for gravitational force to explain how	Newtonian mechanics. For example, calculate the orbital
CCCs : Scale, proportion, and quantity; Systems and system models	orbiting is caused by momentum alone, without reference to gravity.	is sustained.	Earth's gravity keeps the Moon in orbit and predict changes if distance increased.	period of a moon around a gas giant and predict how changes in mass or orbital radius would alter that period.

ACT Integrations: Interpretation of Data, Scientific Investigation

HS-ESS2-1	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Develop a model to illustrate how Earth's internal and surface	Identify basic Earth features or events but may not model or explain how they are formed.	Describe internal and surface processes and provide basic models of landform formation.	Develop models that illustrate how Earth's surface and internal processes build and reshape	Develop integrated models that show interactions between tectonic forces, erosion,
processes operate at different spatial and temporal scales to form	May provide minimal or incorrect connections between surface	Recognize that some processes take longer or occur on larger	landforms. Show how processes like	deposition, and mantle convection.
continental and ocean- floor features.	May use static or inaccurate models that miss key spatial and	fully show how they interact. Provide partial or simplified	erosion operate over different timescales and spatial extents.	(e.g., subduction, uplift) and surface processes (e.g.,
SEPs: Developing and using models	temporal components. For example, describe volcanoes	models with limited integration of system dynamics.	Represent how tectonic and surface forces interact to form mountain ranges, trenches, or	weathering, sedimentation) act over varying time and spatial scales.
DCI: ESS2.A : Earth Materials and Systems	forming "from inside the Earth" without connecting to subduction or mantle convection.	For instance, state that earthquakes make mountains without explaining plate interactions or timescale differences.	ocean basins. For example, explain how continental collisions cause mountain building while erosion	Use evidence from geologic structures, topographic maps, and satellite imagery to support modeling.
CCCs : Scale, proportion, and quantity; Stability and change			reshapes those features over time.	For example, model how seafloor spreading at mid-ocean ridges interacts with continental uplift to shape coastlines over millions of

ACT Integrations:

Scientific Investigation, Interpretation of Data years.

Below Proficient	Approaching Proficient	Proficient	Above Proficient
Identify surface events but may not explain system connections or use data to support claims. Provide examples of feedback between systems that may be unrelated or inaccurate. For example, mention floods without connecting them to changes in land use or climate	Describe examples of surface changes and suggest possible effects on other systems but may not support claims with data. Use limited cause-effect reasoning and provide incomplete or undeveloped feedback examples. For instance, state that "cutting	Use geoscience data to support claims that changes in one Earth system can influence others. Explain interactions such as erosion leading to increased sediment in rivers, which alters aquatic ecosystems. Identify system feedbacks and use evidence to support cause-effect	Analyze data sets from multiple Earth systems to identify feedback loops and long-term system responses. Justify claims about surface change—such as deforestation, glacial melting, or volcanic eruptions—by tracing cascading effects across hydrosphere,
systems.	trees changes the land" without identifying how it affects weather, runoff, or habitats.	reasoning. For example, describe how volcanic eruptions release gases that change atmospheric conditions and affect global	atmosphere, and biosphere. Evaluate both positive and negative feedback and apply evidence to support system-level claims.
		climate.	For example, explain how ice melt reduces albedo, increasing surface temperature and accelerating further melting.
	Below Proficient dentify surface events but may not explain system connections or use data to support claims. Provide examples of feedback netween systems that may be inrelated or inaccurate. For example, mention floods without connecting them to changes in land use or climate systems.	Below ProficientApproaching ProficientJentify surface events but may not explain system connections or ise data to support claims.Describe examples of surface changes and suggest possible effects on other systems but may not support claims with data.'rovide examples of feedback netween systems that may be unrelated or inaccurate.Describe examples of the systems but may not support claims with data.'rovide example, mention floods vithout connecting them to thanges in land use or climate ystems.Use limited cause-effect reasoning and provide incomplete or undeveloped feedback examples.For instance, state that "cutting trees changes the land" without identifying how it affects weather, runoff, or habitats.	Below ProficientApproaching ProficientProficientdentify surface events but may tot explain system connections or ise data to support claims.Describe examples of surface changes and suggest possible effects on other systems but may not support claims with data.Use geoscience data to support claims that changes in one Earth system can influence others.'rovide examples of feedback retween systems that may be inrelated or inaccurate.Use limited cause-effect reasoning and provide incomplete or undeveloped feedback examples.Use limited cause-effect reasoning and provide incomplete or undeveloped feedback examples.Use diment in rivers, which alters aquatic ecosystems.Hentify systems.For instance, state that "cutting trees changes the land" without identifying how it affects weather, runoff, or habitats.Identify system feedbacks and use evidence to support cause-effect reasoning.For example, describe how volcanic eruptions release gases that change atmospheric conditions and affect global climate.For example, describe how volcanic eruptions release gases that change atmospheric conditions and affect global climate.

ACT Integrations: Data Representation, Scientific Investigation

HS-ESS2-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Develop a model based	Identify that Earth's interior is hot	Describe convection within	Create models that illustrate how	Develop a model showing how
on evidence of Earth's	but may not explain how heat	Earth's interior in general terms	thermal energy from Earth's	differences in temperature and
interior to describe the	drives movement.	and may provide partial or	interior causes mantle material to	density within Earth's interior
cycling of matter by	May provide models that are	simplified models.	rise and sink in convection	cause cycling of mantle material
thermal convection.	inaccurate or lack essential	Recognize that heat causes	currents.	through convection.
	components such as density,	movement of materials but may	Describe how convection results	Use evidence from seismology,
SEPs: Developing and	direction of flow, or layer	not fully link this to rock cycling or	in the cycling of solid and molten	volcanism, and plate movement
using models	boundaries.	plate motion.	rock within the mantle.	to support representations of
	May not explain how Earth's	Reference mantle or core layers	Represent energy flow and	matter and energy flow.
DCI: ESS2.A: Earth	interior contributes to surface	inconsistently or with limited	material movement between	Explain how these convective
Materials and Systems	changes.	accuracy.	Earth's inner layers and the	cycles contribute to tectonic
	For example, mention that	For instance, say "hot maama	lithosphere.	activity, including subduction and
CCCs : Energy and matter;	<i>"volcanoes come from inside</i>	moves" without distinguishing	For example, use arrows in a	seafloor spreading.
Systems and system	Earth" without modeling or	between magma and mantle	cross-section diagram to show	For example, model how heated
models	connecting to mantle convection.	convection or explaining the	how hot rock rises and cooler rock	mantle rock rises at mid-ocean
		cyclical nature.	descends, forming a convection	ridges, cools and sinks at
ACT Integrations:			cell.	subduction zones, and drives
				plate motion.

HS-ESS2-4	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use a model to describe how variations in the flow of energy into and out of Earth's systems result in climate changes.	Identify that Earth's temperature changes but may not link this to energy flow or climate systems. Provide models that may be incorrect or incomplete and may omit system boundaries or	Describe that Earth's climate changes with energy flow but may model or explain relationships in a limited way. Mention greenhouse gases or the sun's energy but may not connect	Use models to show that changes in the amount of energy entering or leaving Earth's atmosphere affect global climate. Explain how factors such as greenhouse gases and cloud	Use models to analyze how changes in solar radiation, greenhouse gas concentration, and Earth's reflectivity affect global energy balance. Illustrate long-term climate trends
SEPs: Developing and using models	relevant variables. For example, suggest that the "ozone layer causes warming" or	inputs and outputs in a full system. For instance, state that "more sun	cover influence the energy budget and contribute to warming or cooling trends.	and feedback loops such as polar ice-albedo effects or increased water vapor.
DCI: ESS2.D: Weather and Climate	that weather events are long- term climate changes.	makes Earth hotter" without including atmospheric interactions or long-term patterns.	Describe system interactions and apply cause-effect reasoning within the model.	Integrate human and natural variables into climate models and explain implications for system stability.
CCCs: Energy and matter; Stability and change; Systems and system models			For example, explain that more greenhouse gases trap heat, leading to an increase in average global temperatures.	For example, simulate how increased CO₂ traps more outgoing infrared radiation, raising global temperatures and
ACT Integrations:				intensifying feedback loops.

HS-ESS2-5	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.	Attempt an investigation but may not show clear understanding of water's role or properties. May make claims that are vague or that are not supported with	Conduct investigations that observe the effects of water on Earth materials but provide limited explanations of underlying properties.	Plan and carry out investigations to demonstrate how water contributes to surface processes like erosion or chemical weathering.	Design and conduct investigations that examine multiple properties of water—such as heat capacity, density, and solvent ability—and their role in erosion, weathering, or sediment transport.
SEPs: Planning and carrying out investigations	evidence or correct reasoning. For example, state that "water made the rock disappear" without describing the process or measuring effects.	Describe observations (e.g., "water made the sand move") without connecting to properties like viscosity or energy transfer. For instance, show that soil	Identify and explain relevant properties such as cohesion, temperature change, and solubility. Analyze data to explain how	Collect quantitative data and analyze results to explain how water's unique behavior affects landform development.
DCI: ESS2.C : The Roles of Water in Earth's Surface Processes		erodes but may not explain how water's velocity or content changes the process.	water interacts with different Earth materials over time. For example, observe how running water carries and denosits sediments, shaping	Demonstrate understanding of system interactions, feedbacks, and energy transfer. For example, test how freeze- thaw cycles break down rock and
CCCs : Cause and effect; Energy and matter; Stability and change			stream channels or beaches.	explain how water's expansion during freezing contributes to mechanical weathering.

ACT Integrations:

HS-ESS2-6	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. SEPs: Using mathematics and computational thinking: Developing and	Identify carbon as part of nature but may not represent how it moves or is cycled. Provide vague descriptions such as "carbon is created by plants." May provide explanations that omit mathematical or systems thinking.	Describe parts of the carbon cycle and attempt to model movement between systems with limited accuracy or quantification. Mention carbon processes but leave out rates, feedbacks, or major system interactions. For instance, say "plants use carbon" without explaining how	Create models that show how carbon is stored and transferred between Earth's major systems. Represent key processes such as photosynthesis, respiration, decomposition, combustion, and sedimentation. Explain how carbon moves through living and nonliving	Develop quantitative models that track carbon movement through reservoirs like oceans, atmosphere, soil, and living organisms using accurate flow rates. Integrate anthropogenic and natural factors, including fossil fuel combustion, deforestation, and volcanic activity, into the
DCI: ESS2.D: Weather and Climate; ESS3.D:	For example, list carbon sources without modeling how carbon is exchanged or stored.	this connects to other reservoirs or climate systems.	systems over time. For example, describe how plants absorb atmospheric carbon during photosynthesis and return	carbon cycle model. Use system feedback reasoning to explain how disruptions in one part of the cycle affect the others
Global Climate Change CCCs: Energy and matter; Systems and system			decomposition.	For example, model how increased carbon emissions reduce ocean pH through higher absorption rates, which then
models ACT Integrations: Data Representation, Scientific				affects marine life and sediment storage.

Investigation

ACT Integrations:

HS-ESS3-2	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Evaluate competing	Mention energy or resource	Identify benefits or drawbacks of	Evaluate at least two potential	Evaluate multiple solutions for
design solutions for	strategies but may not evaluate	resource strategies but provide limited analysis or evidence	solutions for energy or mineral use based on cost efficiency and	resource management using environmental impact data cost-
and utilizing energy and	Brovido opinions but may not	Make general claims without	environmental trade-offs.	benefit analyses, and life cycle
mineral resources based	provide any evidence to support	quantitative support or detailed	Identify pros and cons and use	assessments.
on cost-benefit ratios.	those opinions, or may include	comparisons.	evidence to support claims about	Consider short- and long-term
SEPs: Engaging in	vague or inaccurate statements as evidence.	For instance, say "solar is better	which solution is more sustainable or effective.	consequences of resource extraction and use, including
argument from evidence; Constructing	For example, state that "mining is	explaining trade-offs like land use	Apply systems reasoning to	sustainability, economic viability, and ecosystem health.
explanations and	comparison.	or production costs.	consequences or feedbacks.	Argue for optimal solutions using
designing solutions			For example, explain why wind	evidence from real-world case
DCI: ESS3.A: Natural			energy may be more sustainable than coal based on cost over time	reasoning.
Resources			and emission reductions.	For example, compare fracking
CCCs : Cause and effect:				ana solar panel installation by assessina economic returns.
Systems and system				water use, carbon emissions, and
models; Stability and				public health impacts.
ACT Integrations:				
Evaluation of				

Models/Claims, Scientific

Reasoning

HS-ESS3-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.	Mention resource use or population growth but may not use simulations to connect these to biodiversity. May misinterpret cause-effect relationships or offer inaccurate reasoning.	Construct simple simulations or describe how changes in one variable (e.g., population) affect others (e.g., resources). Provide limited interpretation of results or fail to explain long-term implications.	Create or interpret simulations that demonstrate how human resource use affects population support and biodiversity levels. Represent key variables such as population size, consumption rate, and habitat area.	Above ProficientCreate simulations that showinteractions between populationgrowth, resource consumption,and biodiversity outcomes undermultiple scenarios.Use feedback mechanisms, suchas habitat loss or pollutionaccumulation, to predict tippingpoints and sustainabilitythresholds.Adjust variables and justifyconclusions using quantitativeoutputs and ecological reasoning.
SEPs: Using mathematics and computational thinking	For example, state that "cutting trees helps animals by making space for farms" without modeling or supporting logic.	For instance, show that more people need more water but not connect this to habitat degradation or species loss.	Use simulation results to draw conclusions about long-term impacts and trade-offs. For example, model how	
			increased land use for agriculture	
DCI: ESS3.A : Natural Resources; ESS3.C: Human Impacts on Earth Systems			short-term but decrease native species diversity.	For example, simulate how overfishing reduces marine biodiversity and impacts future food security under varying reaulation levels.
CCCs : Systems and system models; Stability and change; Cause and effect				

ACT Integrations: Data Representation, Scientific

Investigation

HS-ESS3-4	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.	Mention technologies like solar panels or recycling but may not explain their effectiveness or propose design improvements. Make generalized claims without	Describe technological efforts to reduce environmental harm but provide vague or unsupported evaluations. Offer design changes without explaining how they affect system function or reduce impacts. For instance, suggest "planting more trees" without considering site limitations or growth factors.	Evaluate technological solutions (e.g., carbon capture, solar panels, green infrastructure) based on their effectiveness in reducing human impacts.	Evaluate the effectiveness of environmental technologies using performance data, efficiency metrics, and ecological impact reports.
SEPs: Constructing explanations and designing solutions DCI: ESS3.C: Human Impacts on Earth Systems	connection to systems reasoning. For example, state that "technology can fix the environment" without explaining how or offering evidence.		Identify limitations and propose refinements based on system needs or environmental performance. Use cause-effect reasoning to support design recommendations.	Refine a proposed or existing design by modifying variables to optimize sustainability and minimize unintended consequences. Justify refinements using system modeling and trade-off analysis.
CCCs: Cause and effect; Systems and system models			For example, assess how permeable pavement reduces stormwater runoff and suggest improvements to extend its durability.	For example, revise a green roof design to increase runoff absorption and reduce heat island effect while minimizing cost and maintenance.

Evaluation of

Reasoning

Models/Claims, Scientific

HS-ESS3-5	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of climate change and associated future	State that climate is changing but may not support with data or explain implications. May provide examples that are inaccurate or unrelated (e.g., confusing daily weather with long-term trends).	Refer to climate data or models but may not clearly interpret trends or forecast impacts. Mention general climate effects (e.g., warming) but provide limited reasoning or evidence. For instance, state that "the Earth is getting hotter" without referencing supporting data or specific impacts.	Use evidence from climate data and model results to explain current climate trends and potential impacts on Earth systems. Interpret outputs to identify changes such as temperature rise, glacial melt, or shifting ecosystems. Support forecasts with logical cause-effect reasoning and scientific context.	Analyze geoscience data trends and global climate model outputs to forecast climate-related changes in atmospheric, hydro spheric, and bio spheric systems. Justify conclusions using multi- decade datasets, IPCC scenarios,
impacts to Earth systems. SEPs: Analyzing and interpreting data	For example, suggest that a cold winter disproves global warming.			and model projections. Predict likely outcomes such as sea-level rise, drought frequency, or species migration based on specific model assumptions.
Climate Change			For example, explain how rising sea surface temperatures may intensify hurricane strength in	For example, forecast agricultural shifts in a region using temperature, precipitation, and
change; Cause and effect; Systems and system models			coming aecaaes.	carbon concentration projections.

ACT Integrations: Data Representation, Interpretation of Data

HS-ESS3-6	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use a computational representation to illustrate the relationships among Earth systems and how those relationships are	Attempt to show Earth systems but may not model relationships accurately. May not connect human activities to system-level changes or use	Create basic representations of Earth systems but may not show detailed relationships or model human modifications. Identify some effects of human activity but may omit important system interactions or variables. For instance, state that "pollution affects the ocean" without connecting this to temperature, oxygen levels, or food webs.	Create computational representations of how changes in one Earth system (e.g., atmosphere) influence others (e.g., hydrosphere, biosphere) due to human activity. Describe the role of feedback and apply cause-effect reasoning to predict outcomes. <i>For example, simulate how</i> <i>deforestation affects carbon</i> <i>storage, climate, and water</i> <i>availability in ecosystems.</i>	Use advanced computational models to show how human activities alter Earth system interactions such as carbon cycling, energy flow, and water distribution.
being modified due to human activity. SEPs: Using mathematics and computational thinking	For example, draw unrelated parts of the environment without showing how they interact or			Represent feedback loops and non-linear changes, like thresholds or tipping points. Predict long-term effects using scenarios with varied human
DCI: ESS3.C: Human Impacts on Earth Systems	chunge.			inputs and policy outcomes. Justify conclusions using data trends and system behavior.
CCCs : Systems and system models; Stability and change				For example, simulate how deforestation affects atmospheric CO ₂ , which alters temperature, which further affects ecosystems

ACT Integrations: Scientific Investigation, Interpretation of Data

and land use.