ILLINOIS State Board of Education

Theory of Action: Academic standards represent a collective commitment around what students should learn each year. The state assessment asks students to demonstrate their knowledge, skills, and understanding related to these standards using a common measure. The resulting data allows us to see patterns in performance that should guide school and district improvement, helping identify areas of strength and opportunity.

Role of Performance Level Descriptors in Defining Proficiency: Performance level descriptors bridge the state assessment to classroom instruction and the systems of formative assessments that guide local instruction and choices about individual students. *Academic proficiency represents a <u>range</u> of observable student performance characteristics*. There are multiple pathways to proficiency, and students rely upon their strengths differently within that range of performance.

Proficiency and Difficulty: A student's ability to demonstrate proficiency is influenced by the complexity of the texts or stimuli presented, tasks they're asked to complete, and the contexts in which they are engaged. As student performance improves, students are typically able to handle more challenging texts/stimuli, tasks, and contexts, and are able to demonstrate their skills and knowledge more accurately and consistently.

SCIENCE HIGH SCHOOL LIFE SCIENCES

Life Sciences Student pe	Life Sciences Student performance indicates the ability to				
HS-LS1-1	Below Proficient	Approaching Proficient	Proficient	Above Proficient	
Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life.	Identify basic cell structures (e.g., nucleus, cell membrane) and recognize DNA as genetic material without connecting structure to function at the molecular level.	Construct simple explanations showing that DNA contains genetic information that relates to protein production, but with incomplete connections between molecular structure and cellular function.	Construct detailed explanations showing how the structure of DNA enables it to encode genetic information that determines protein structure and function.	Develop comprehensive explanations that integrate structure-function relationships across multiple scales , from DNA base-pairing to protein folding to organism-level traits.	
DCI : LS1.A: Structure and Function SEP : Constructing	Describe simplified versions of protein synthesis that lack accurate details about the information flow from genes to proteins.	Outline the general process of gene expression with some awareness of the cause-effect relationship between DNA sequence and protein structure.	Explain the mechanisms of gene expression from DNA to RNA to protein, including how nucleotide sequences correspond to amino acid sequences.	Analyze how changes in DNA structure can affect protein structure and function and predict resulting effects on cellular systems and organism phenotype.	
Explanations CCC: Structure and Function	Recognize that DNA contains information but show limited understanding of how this relates to cellular systems or protein function.	Recognize that proteins have specific shapes related to their functions but provide limited explanation of how DNA determines these structures.	Connect protein structure to specific cellular functions and explain how specialized cells utilize different proteins to perform their roles in multicellular organisms.	Evaluate how the molecular mechanisms of gene expression contribute to cell differentiation and the emergence of complex traits in multicellular organisms.	
ACT Integrations: Scientific Investigation, Interpretation of Data	For example, state that "DNA is in the nucleus and contains genes" without explaining how DNA structure encodes information or how this determines protein structure and cellular function.	For example, describe that "DNA has genes that code for proteins that do different jobs in the cell" but explain the mechanisms of transcription, translation, or protein folding with partial accuracy.	For example, explain how the nucleotide sequence in DNA codes for a specific sequence of amino acids in a protein that folds to form a functional enzyme that catalyzes a metabolic reaction within a specialized cell type.	For example, analyze how a point mutation in a DNA sequence alters amino acid sequence in a protein, changing its binding affinity in a signaling pathway, which affects cellular response and ultimately influences an organism-level trait like antibiotic resistance in bacteria.	

HS-LS1-2	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	Identify basic body systems and recognize some components like organs or tissues without representing their hierarchical organization or interactions.	Develop basic models showing some connections between body systems but with limited detail about how smaller subsystems contribute to larger system function.	Develop detailed models illustrating the hierarchical organization from cells to tissues to organs to organ systems, with clear representation of their interactions.	Create sophisticated models that demonstrate the emergent properties of biological systems, showing how interactions among components result in functions that cannot be predicted from individual parts.
DCI : LS1.A – Structure and Function SEP : Developing and Using	Create simple diagrams showing isolated body parts without connecting them to system function or illustrating how they work together.	Represent general relationships between cells, tissues, and organs with some awareness of hierarchical organization but incomplete representation of interactions.	Explain how structural organization at different levels contributes to system function and how multiple systems coordinate to maintain homeostasis.	Analyze how disruption at one organizational level cascades across multiple scales, affecting system stability and organism function.
Models CCC: Systems and System Models	Recognize that organisms contain different structures but show limited understanding of how these structures form functional systems .	Describe how major organ systems serve different functions but show partial understanding of how these systems interact to maintain organism homeostasis.	Analyze the relationships between structure and function across scales, showing how specialized cells contribute to tissue function and how tissues enable organ function.	Integrate molecular, cellular, and physiological mechanisms to explain how feedback loops maintain system function despite changing conditions.
ACT Integrations: Interpretation of Data, Scientific Investigation	For example, label organs in a diagram but represent them as isolated parts rather than as components of interacting systems that together maintain organism function.	For example, create a model showing that the heart pumps blood through vessels and lungs add oxygen, but incompletely explain how these processes connect to cellular respiration or how multiple systems coordinate their activities.	For example, model how the circulatory and respiratory systems work together to deliver oxygen to tissues and remove carbon dioxide, showing how specialized cells in each organ contribute to these functions and how these processes support cellular metabolism throughout the body.	For example, model how changes in cellular ion channels affect cardiac muscle contraction, heart rhythm, blood pressure regulation, and ultimately tissue perfusion throughout the body, demonstrating how molecular changes cascade through multiple levels of organization and how regulatory mechanisms compensate for disruptions.

HS-LS1-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	Design simple investigations related to biological responses but with limited consideration of variables, controls, or data collection methods needed to study feedback mechanisms.	Plan basic investigations exploring processes like osmosis, diffusion, or temperature regulation with some attention to system responses and methodological controls.	Design and implement well- controlled investigations that test how feedback mechanisms maintain dynamic equilibrium in biological systems under changing conditions.	Design and execute sophisticated investigations that integrate multiple variables and analyze their interactions in maintaining system stability across different organizational levels.
DCI: LS1.A – Structure and Function SEP: Planning and Carrying Out Investigations	Collect observational data about organism responses without connecting these to homeostatic processes or regulatory systems.	Recognize that organisms maintain internal stability but show incomplete understanding of how feedback mechanisms achieve this regulation.	Analyze experimental data to explain how positive and negative feedback loops respond to disruptions and return systems to set points or establish new equilibrium states.	Apply systems thinking to predict how perturbations affect interconnected feedback mechanisms and develop hypotheses about compensatory responses.
CCC: Stability and Change ACT Integrations: Scientific Investigation, Evaluation of Models	Identify basic physiological changes without recognizing the underlying feedback systems that regulate these changes.	Collect relevant data about environmental changes and organism responses, but provide limited analysis of the cause- effect relationships in feedback loops.	Evaluate the effectiveness of experimental designs, including appropriate controls, reliable measurements, and adequate sample sizes to draw valid conclusions about regulatory mechanisms .	Evaluate the limitations of experimental models and propose refinements that would more accurately capture the complexity of biological regulation .
	For example, observe that plants grow toward light and record this directional growth, but not investigate the sensors, hormones, or response mechanisms involved in maintaining optimal light exposure.	For example, measure changes in body temperature after exercise and during recovery, but incompletely explain the sensors, effectors, or negative feedback loops that regulate this process to maintain homeostasis.	For example, design an experiment testing how plants respond to changes in light direction, measuring growth rates, hormone concentrations, and cellular elongation to demonstrate how phototropism maintains optimal light exposure through negative feedback.	For example, investigate how blood glucose regulation involves multiple hormones (insulin, glucagon), tissues (pancreas, liver, muscle), and signaling pathways, analyzing how disruptions in one component cascade through the system to affect cellular metabolism, tissue function, and whole-body energy balance.

HS-LS1-4	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	Identify basic cellular structures involved in energy processing without showing how energy flows and transforms through biological systems.	Develop basic models showing some aspects of cellular energy processes with partial representation of energy transformation stages.	Construct detailed models that illustrate how chemical energy stored in carbon-based molecules is transferred through cellular respiration to support cellular work.	Create sophisticated models that integrate energy transformations across multiple scales , from molecular interactions to ecosystem energy flows.
 DCI: LS1.B – Growth and Development of Organisms SEP: Developing and Using Models CCC: Systems and System Models 	Create simple representations of cells that identify some organelles but show limited understanding of their functional relationships or energy conversion roles.	Trace the general flow of energy through photosynthesis and cellular respiration but with incomplete details about intermediate molecules or reaction pathways.	Explain how ATP functions as the primary energy currency of cells, coupling energy-releasing reactions to energy-requiring processes.	Analyze thermodynamic constraints on biological systems and explain how energy efficiency varies across different metabolic pathways and trophic levels.
ACT Integrations: Data Representation, Interpretation of Data	Recognize that cells use food for energy without accurately representing the molecular processes of energy transformation .	Describe ATP as an energy carrier but show limited understanding of how its molecular structure relates to energy storage and transfer.	Apply principles of energy conservation to track how energy transforms from one form to another while supporting cellular functions and organismal processes.	Evaluate how environmental conditions influence energy transformation processes and how organisms have evolved optimal energy capture and utilization strategies.
	For example, identify chloroplasts and mitochondria in cell diagrams but represent energy conversion simply as "plants make food with sunlight" and "cells use food for energy" without showing the biochemical pathways involved.	For example, create a flow diagram showing glucose breaking down to release energy in cells, but missing key processes like the electron transport chain or not accounting for the conservation of matter and energy.	For example, model how light energy is converted to chemical energy during photosynthesis, stored in glucose molecules, and then systematically released through cellular respiration to generate ATP that powers cellular work, with all energy transformations obeying thermodynamic principles.	For example, develop quantitative models that track energy from photosynthetic capture through food web transfers, analyzing efficiency losses at each step, explaining how cellular respiration pathways differ in efficiency, and connecting these processes to ecosystem productivity and resilience.

HS-LS1-5	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	Identify basic components of photosynthesis like sunlight, plants, and oxygen production without accurately representing energy transformations or molecular processes.	Identify basic components of photosynthesis like sunlight, plants, and oxygen production without accurately representing energy transformations or molecular processes.	Construct detailed models showing how light energy is converted to chemical energy during photosynthesis through a series of molecular interactions and chemical reactions.	Create sophisticated models that integrate atomic/molecular interactions with cellular structures and ecological energy flows in photosynthesis.
DCI: LS1.C – Organization for Matter and Energy Flow in Organisms SEP: Developing and Using Models CCC: Energy and Matter	Create simple representations showing that plants use sunlight but lacking detail about reactants, products, or the conservation of matter and energy .	Create simple representations showing that plants use sunlight but lacking detail about reactants, products, or the conservation of matter and energy .	Explain how chlorophyll molecules capture photons, energizing electrons that power the splitting of water, generation of ATP and NADPH, and ultimately the fixation of carbon into glucose.	Analyze limiting factors in photosynthetic efficiency and predict how changing environmental conditions (light intensity, carbon dioxide levels, temperature) would affect energy capture and carbon fixation.
ACT Integrations: Evaluation of Models, Scientific Investigations	Recognize that plants produce their own food but show limited understanding of the molecular interactions that convert light energy to chemical energy.	Recognize that plants produce their own food but show limited understanding of the molecular interactions that convert light energy to chemical energy.	Track both energy and matter through the light-dependent and light-independent reactions, demonstrating how energy is transformed and matter is conserved throughout the process.	Evaluate evolutionary adaptations in photosynthetic processes (C3, C4, CAM pathways) in terms of their structural and functional advantages in different environments.
	For example, draw plants in sunlight with arrows indicating "making food" without specifying the carbon dioxide and water inputs, glucose outputs, or the chemical processes that trap light energy in chemical bonds.	For example, draw plants in sunlight with arrows indicating "making food" without specifying the carbon dioxide and water inputs, glucose outputs, or the chemical processes that trap light energy in chemical bonds.	For example, develop a model showing how light absorption by chlorophyll initiates electron transport chains that generate ATP and NADPH, which then power the Calvin cycle where carbon dioxide is fixed into carbohydrates, storing the energy in chemical bonds.	For example, develop models comparing how C3 and C4 plants differ in their carbon fixation mechanisms, analyzing how these structural and biochemical adaptations affect photosynthetic efficiency under varying CO ₂ concentrations, temperatures, and water availability, with implications for agricultural productivity under climate change scenarios.

HS-LS1-6	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large	Identify glucose as an energy source for cells without explaining the molecular transformations that release this energy or how atoms are rearranged.	Construct basic explanations describing how glucose is metabolized in cells, with some understanding of the molecular rearrangements but incomplete details about reaction pathways.	Construct detailed explanations of how cells systematically break down carbon-based molecules through a series of chemical reactions that transfer electrons and release energy.	Develop comprehensive explanations that integrate atomic/molecular transformations with cellular metabolism and broader ecosystem processes.
carbon-based molecules. DCI : LS1.C – Organization for Matter and Energy Flow in Organisms	Recognize that cells break down sugar but show limited understanding of how the atoms and energy in glucose are transferred to other molecules.	Trace carbon compounds through simple metabolic pathways but show partial understanding of how electrons are transferred or how energy is captured in ATP.	Explain how the carbon, hydrogen, and oxygen atoms in glucose can be tracked through metabolic pathways, demonstrating that matter is conserved while energy is transformed.	Analyze how variations in metabolic pathways (aerobic respiration, anaerobic respiration, fermentation) reflect evolutionary adaptations to different environmental conditions.
SEP: Constructing Explanations and Designing Solutions CCC: Energy and Matter	Describe cellular processes in general terms without accurately representing the chemical reactions involved or the conservation of matter.	Describe how atoms from food molecules can become part of other biological molecules but with limited explanation of specific biochemical transformations.	Analyze how cellular respiration and biosynthetic pathways are connected, showing how organic molecules can be broken down for energy or used as building blocks for new molecules.	Evaluate the thermodynamic efficiency of different metabolic strategies and explain how energy transformations constrain biological systems across scales.
ACT Integrations : Scientific Explanation, Interpretation of Data	For example, explain that "cells break down sugar for energy" without tracing the carbon atoms through metabolic pathways or explaining how energy is extracted step-by-step from chemical bonds.	For example, explain that glucose is broken down into carbon dioxide in mitochondria to release energy, but incompletely describe intermediate compounds, electron carriers, or how energy is systematically extracted and captured.	For example, trace how glucose enters glycolysis, producing pyruvate that enters the mitochondria for the citric acid cycle, releasing carbon dioxide while transferring electrons to carriers that power ATP synthesis in the electron transport chain, with clear accounting of carbon atoms throughout the process.	For example, compare how different fermentation pathways in yeast, bacteria, and muscle cells rearrange carbon compounds differently, affecting ATP yield and waste product formation, and analyze how these molecular adaptations provide selective advantages in specific ecological niches, connecting biochemistry to evolutionary fitness.

HS-LS1-7	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and	Identify that cells divide and multiply but show limited understanding of how this process maintains genetic continuity or contributes to organism growth.	Develop basic models showing the main phases of mitosis with some understanding of chromosome behavior but incomplete details about DNA replication or nuclear division.	Construct detailed models showing how chromosomes are replicated, aligned, and distributed during mitosis, ensuring genetic continuity across cell generations.	Develop sophisticated models that integrate molecular mechanisms of cell cycle regulation with tissue development and organism-level growth patterns.
the bonds in new compounds are formed, resulting in a net transfer of energy. DCI : LS1.C – Organization	Create simple diagrams of dividing cells without accurate representation of chromosomes, DNA replication, or the stages of mitosis .	Describe that specialized cells develop from stem cells but provide limited explanation of the regulatory mechanisms that control differentiation.	Explain how cell division contributes to growth, development, and tissue repair in multicellular organisms through regulated cycles of DNA replication and cytoplasmic division.	Analyze how disruptions in cell cycle control or differentiation pathways contribute to diseases such as cancer, connecting molecular events to system dysfunction.
for Matter and Energy Flow in Organisms SEP : Developing and Using Models	Recognize that organisms have specialized cells but show limited understanding of how cell differentiation occurs from identical genetic material.	Explain that cell division contributes to growth and repair with some awareness of the cell cycle but incomplete representation of checkpoints or control mechanisms.	Model how cellular differentiation produces specialized cells with distinct structures and functions despite containing identical genetic material, through selective gene	Evaluate how signaling pathways, transcription factors, and epigenetic modifications interact to regulate stem cell maintenance and differentiation in complex tissues.
CCC : Energy and Matter ACT Integrations : Evaluation of Models, Scientific Explanation	For example, draw cell division as simple splitting without addressing chromosome duplication, segregation, or the mechanisms that ensure each daughter cell receives identical genetic material.	For example, create models showing chromosomes separating during mitosis but incompletely explain centromere function, spindle apparatus, or how the cell cycle ensures accurate DNA replication before division begins.	expression. For example, model how stem cells in bone marrow undergo controlled cell division and differentiation to produce specialized blood cells (erythrocytes, leukocytes, platelets) with distinct functions, while maintaining a population of undifferentiated cells for future divisions.	For example, model how signaling networks like Wnt and Notch pathways regulate stem cell division and fate determination, how epigenetic changes establish and maintain differentiated cell states, and how failures in these regulatory systems can lead to developmental disorders or cancerous growth.

Below Proficient	Approaching Proficient	Proficient	Above Proficient
Identify that ecosystems have limited resources but show limited understanding of how this relates to population size or carrying capacity.	Create simple mathematical representations showing how one or two factors affect population size, with basic understanding of carrying capacity but limited consideration of multiple variables.	Develop mathematical and computational models that incorporate multiple factors affecting carrying capacity, clearly showing how these factors interact in ecosystem dynamics.	Create sophisticated mathematical models that integrate multiple variables across different scales to predict carrying capacity under various scenarios.
Recognize basic factors like food and space that affect organisms but provide minimal mathematical representation of these relationships.	Calculate population changes using provided formulas but show partial understanding of how different factors interact to determine ecosystem carrying capacity.	Analyze quantitative relationships between population size, resource availability, and environmental factors to explain how carrying capacity is determined.	Evaluate how changes in one factor can have cascading effects through ecosystems due to complex feedback mechanisms and interdependent relationships.
Describe population changes in general terms without incorporating quantitative analysis or ecosystem-level interactions.	Describe how resources limit population growth with some quantitative support but incomplete analysis of how these limitations operate across different scales .	Apply principles of scale to explain how carrying capacity factors operate differently at the microhabitat, ecosystem, and biome levels.	Analyze how time scales affect carrying capacity, differentiating between short-term fluctuations and long-term ecosystem changes.
For example, state that "an ecosystem can only support so many animals" without using mathematical representations to explain the specific limiting factors or how these operate at different scales.	For example, graph how a population increases until it reaches a carrying capacity plateau, but incompletely explain how this carrying capacity is determined by the interaction of multiple environmental factors or how these relationships change at different spatial or temporal scales.	For example, create a computational model showing how carrying capacity for a deer population is determined by the interaction of available forage, predator numbers, disease, and habitat area, with mathematical representations of how these factors operate differently at local and regional scales.	For example, develop a computational simulation that models how climate change alters multiple environmental variables (precipitation patterns, temperature, growing season) and predicts resulting changes in carrying capacity for several interacting species across local, regional, and global scales, incorporating feedback loops and time-dependent factors.
	Identify that ecosystems have limited resources but show limited understanding of how this relates to population size or carrying capacity. Recognize basic factors like food and space that affect organisms but provide minimal mathematical representation of these relationships. Describe population changes in general terms without incorporating quantitative analysis or ecosystem-level interactions. For example, state that "an ecosystem can only support so many animals" without using mathematical representations to explain the specific limiting factors or how these operate at	Identify that ecosystems have limited resources but show limited understanding of how this relates to population size or carrying capacity.Create simple mathematical representations showing how one or two factors affect population size, with basic understanding of carrying capacity but limited consideration of multiple variables.Recognize basic factors like food and space that affect organisms but provide minimal mathematical representation of these relationships.Calculate population changes using provided formulas but show partial understanding of how different factors interact to determine ecosystem carrying capacity.Describe population changes in general terms without incorporating quantitative analysis or ecosystem-level interactions.Describe how resources limit population growth with some quantitative support but incomplete analysis of how these limitations operate across different scales.For example, state that "an ecosystem can only support so many animals" without using mathematical representations to explain the specific limiting factors or how these operate at different scales.For example, graph how a population increases until it reaches a carrying capacity is determined by the interaction of multiple environmental factors or how these relationships change at different spatial or temporal	Identify that ecosystems have limited resources but show limited understanding of how this relates to population size or carrying capacity.Create simple mathematical representations showing how one or two factors affect population size, with basic understanding of carrying capacity.Develop mathematical and computational models that incorporate multiple factors affecting carrying capacity, clearly showing how these factors interact in ecosystem dynamics.Recognize basic factors like food and space that affect organisms but provide minimal mathematical representation of these relationships.Calculate population changes using provided formulas but show partial understanding of how different factors interact to determine ecosystem carrying capacity.Analyze quantitative relationships between population size, resource availability, and environmental factors to explain how carrying capacity is determined.Describe population changes incorporating quantitative analysis or ecosystem-level interactions.Describe how resources limit population growth with some quantitative support but incomplete analysis of how these limitations operate across different scales.Apply principles of scale to explain how carrying capacity for a deer population increases until it reaches a carrying capacity is determined by the interaction of multiple environmental factors or how these relationships change at different scales.For example, create a computation is determined by the interaction of available forage, predator numbers, disease, and habitat area, with mathematical representation of how these relationships change at different scales.For example, create a computation is determined by the interaction of available forage, <b< td=""></b<>

HS-LS2-2	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use mathematical	Identify that ecosystems contain	Apply basic mathematical	Develop mathematical	Create sophisticated
representations to support	different species but show limited	calculations to describe	representations that analyze	mathematical models that predic
and revise explanations	understanding of biodiversity	biodiversity (e.g., species	biodiversity patterns across	biodiversity responses to
based on evidence about	measures or mathematical	richness) but show partial	different ecosystem scales,	environmental changes across
factors affecting	representations of population	understanding of how multiple	showing relationships between	multiple scales, incorporating
biodiversity and	dynamics.	factors interact to affect	species richness, habitat area,	complex interactions among
populations in ecosystems		ecosystem stability.	and environmental factors.	biotic and abiotic factors.
of different scales.				
	Recognize that populations	Create simple graphs or	Use quantitative models to	Analyze how factors affecting
	change over time but provide	equations showing population	explain how factors such as	biodiversity operate differently
DCIs: LS2.A –	minimal quantitative analysis of	changes over time with some	resource availability, habitat	across temporal and spatial
Interdependent	how various factors affect these	consideration of factors like	connectivity, and disturbance	scales, with quantitative
Relationships in	changes.	reproduction and mortality rates.	regimes affect population	evaluation of threshold effects
Ecosystems,			dynamics and community	and tipping points.
LS2.C – Ecosystem			structure.	
Dynamics, Functioning,				
and Resilience	Describe ecosystem diversity in	Explain how some environmental	Revise explanations based on	Integrate multiple mathematical
	general terms without	factors affect biodiversity with	mathematical evidence,	approaches to evaluate
	incorporating scale	limited quantitative support and	demonstrating how biodiversity	ecosystem functioning,
SEP: Using Mathematics	considerations or mathematical	incomplete analysis across	contributes to ecosystem	evolutionary processes, and
and Computational Thinking	relationships.	different spatial scales.	resilience and stability.	human impacts on biodiversity.
	For example, list different species	For example, calculate a simple	For example, use species-area	For example, develop
CCC. Casta Duran sting	in an ecosystem but not use	biodiversity index for different	curves and diversity indices to	computational models that
CCC : Scale, Proportion,	mathematical indices to measure	areas but incompletely explain	analyze how habitat	integrate island biogeography
and Quantity	biodiversity or to explain how	how area size, habitat	fragmentation affects biodiversity	theory, metapopulation
	diversity changes with ecosystem	fragmentation, or disturbance	at different spatial scales, and	dynamics, and species interaction
ACT Integrations:	area or other variables.	history quantitatively affect these	model how greater species	networks to predict how habitat
Interpretation of Data,		measurements or how	diversity increases ecosystem	fragmentation and climate
Drawing Conclusions		biodiversity patterns change from	resilience to environmental	change will affect biodiversity at
5		local to regional scales.	disturbances through redundancy	genetic, species, and ecosystem
			in functional roles.	levels, with distinct predictions for
				different ecosystem types and
				geographic regions.
		r		

HS-LS2-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	Identify that organisms need energy but show limited understanding of how matter cycles or energy flows through biological systems.	Construct basic explanations of how matter cycles and energy flows through ecosystems with some understanding of the processes involved but incomplete details about aerobic and anaerobic pathways .	Construct detailed explanations of how matter cycles and energy flows through ecosystems, comparing and contrasting aerobic and anaerobic processes at the molecular level.	Develop comprehensive explanations that integrate molecular transformations in metabolic pathways with ecosystem-level matter cycling and energy flow across diverse environmental conditions.
 DCI: LS2.B – Cycles of Matter and Energy Transfer in Ecosystems SEP: Constructing Explanations and Designing Solutions 	Recognize basic processes like photosynthesis and cellular respiration without accurately explaining the molecular transformations involved.	Describe differences between photosynthesis and cellular respiration with some recognition of how they are linked in ecosystem functioning .	Explain how carbon, nitrogen, and other elements move through biogeochemical cycles, with clear distinction between the fate of matter (cycled) and energy (flows and dissipates).	Analyze how evolutionary adaptations in metabolic pathways optimize energy capture under different environmental constraints, with quantitative assessment of energy efficiency and matter transformation.
CCC : Energy and Matter ACT Integrations : Scientific Explanation, Understanding Concepts	Describe that decomposition breaks down dead organisms without connecting this to matter cycling or energy transfer.	Explain decomposition's role in matter cycling with partial understanding of how microorganisms function in aerobic versus anaerobic conditions.	Analyze evidence showing how organisms use different metabolic pathways depending on environmental conditions, with accurate representations of the molecular transformations and energy yields.	Evaluate how disruptions to biogeochemical cycles affect ecosystem function and stability, with evidence-based predictions about system responses.
	For example, state that "plants make food and animals eat plants for energy" without explaining how carbon and other elements cycle between organisms and the environment or how energy flows through and is transformed within ecosystems.	For example, describe how carbon moves from the atmosphere to plants through photosynthesis and then to animals through feeding, but incompletely explain how fermentation and anaerobic respiration differ from aerobic processes in terms of energy yield and end products.	For example, explain how bacteria in oxygen-depleted environments use alternative electron acceptors like nitrate or sulfate in anaerobic respiration, comparing the ATP yield to aerobic respiration and explaining the different end products that result, with implications for biogeochemical cycling in diverse environments like wetlands or deep ocean sediments.	For example, construct explanations for how methane- producing archaea in anaerobic environments like wetlands and landfills use unique metabolic pathways that contribute to carbon cycling while producing greenhouse gases and analyze how climate change might alter the balance between aerobic and anaerobic decomposition processes in thawing permafrost, with cascading effects on global carbon and nitrogen cycles.

HS-LS2-4	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	Identify that energy moves through ecosystems but show limited ability to represent this movement mathematically or distinguish between energy and matter.	Create basic mathematical representations of energy pyramids or food webs with some understanding of energy transfer efficiency but incomplete quantitative analysis.	Develop mathematical models that quantitatively represent both matter cycling and energy flow through ecosystems, clearly distinguishing between their different fates.	Create sophisticated mathematical models that integrate multiple biogeochemical cycles with energy flow, analyzing system dynamics under different scenarios.
DCI: LS2.B – Cycles of Matter and Energy Transfer in Ecosystems SEP: Using Mathematics and Computational	Recognize that organisms can be classified as producers or consumers without quantitatively analyzing energy transfer between trophic levels .	Calculate simple energy flows between trophic levels but show partial understanding of why energy decreases at each level.	Calculate efficiency of energy transfer between trophic levels and use these calculations to support claims about ecosystem structure and carrying capacity.	Evaluate ecosystem energy budgets across different biomes, using quantitative comparisons to explain variations in productivity and trophic structure.
Thinking CCC: Energy and Matter	Describe food chains in general terms without incorporating mathematical representations of matter cycling or energy flow.	Represent matter cycling with limited mathematical support or incomplete distinction between the different fates of matter and energy in ecosystems.	Analyze quantitative data showing how matter is transformed and recycled while energy flows through ecosystems and is ultimately dissipated as	Predict how changes in one part of an ecosystem will affect matter cycling and energy flow throughout the system using mathematical relationships and
ACT Integrations: Interpretation of Data, Scientific Explanation	For example, draw a simple food chain showing that plants are eaten by herbivores which are eaten by carnivores, but without mathematical calculations of energy transfer efficiency or representation of how matter is recycled.	For example, construct a pyramid of energy showing decreasing energy at higher trophic levels and calculate that approximately 10% of energy transfers between levels, but incompletely explain the thermodynamic principles behind this pattern or how matter behaves differently from energy.	heat. For example, use mathematical representations to calculate productivity and biomass at different trophic levels, analyze carbon and nitrogen cycling through biogeochemical processes, and explain how the laws of thermodynamics constrain energy flow through food webs, with implications for ecosystem structure and sustainable harvest levels.	feedback analysis. For example, develop computational models that integrate carbon, nitrogen, and phosphorus cycles with energy flow to predict how climate change or nutrient pollution might alter ecosystem productivity, trophic efficiency, and biogeochemical cycling rates across different ecosystems, with quantitative assessment of threshold effects and resilience.

HS-LS2-5	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	Identify that carbon exists in different Earth systems but show limited understanding of how it cycles between these systems.	Develop basic models showing carbon movement between organisms and the atmosphere through photosynthesis and respiration, with some understanding of carbon reservoirs but incomplete representation of all Earth systems.	Develop comprehensive models illustrating how carbon cycles among all four Earth spheres, with clear representation of the chemical transformations involved in biological processes.	Create sophisticated models that integrate carbon cycling across multiple temporal and spatial scales, with quantitative representation of flux rates and reservoir sizes under changing conditions
DCI: LS2.B – Cycles of Matter and Energy Transfer in Ecosystems SEP: Developing and Using Models	Recognize that photosynthesis and respiration involve carbon dioxide but provide minimal explanation of their role in the global carbon cycle .	Describe how carbon dioxide is fixed by plants and released through respiration with partial modeling of carbon's chemical transformations .	Explain how photosynthesis converts atmospheric carbon dioxide into organic molecules while respiration oxidizes these molecules, returning carbon to the atmosphere and completing the biological carbon cycle.	Analyze how human activities have altered natural carbon cycles, using models to illustrate changes in carbon distribution among Earth systems and potential feedback mechanisms .
CCC: Systems and System Models ACT Integrations: Evaluation of Models, Scientific Investigation	Create simple representations showing some carbon-containing components without accurately modeling the movement of carbon between Earth's spheres. For example, draw plants taking in carbon dioxide and animals breathing it out, but without connecting these processes to the broader carbon cycle involving the atmosphere, oceans, sediments, and fossil fuels.	Represent some carbon pathways but show limited understanding of timescales or the quantitative aspects of carbon storage in different reservoirs. For example, create a diagram showing how carbon moves through photosynthesis, food webs, and respiration, but incompletely represent carbon movement through the hydrosphere and geosphere or the different timescales of these processes.	Analyze the relative sizes of carbon reservoirs and flux rates between them, including both short-term biological cycles and long-term geological processes. For example, create models showing how carbon moves through multiple pathways: from atmospheric CO ₂ to plant biomass through photosynthesis, through food webs via consumption, back to the atmosphere through respiration, into the hydrosphere through dissolution, into the geosphere through sedimentation and fossil fuel formation, and back to the atmosphere through combustion and volcanic activity.	Evaluate how perturbations to the carbon cycle interact with other biogeochemical cycles and Earth systems, modeling complex system interactions . <i>For example, develop dynamic</i> <i>models that integrate carbon flux</i> <i>through fast biological processes</i> (<i>photosynthesis, respiration</i>), <i>medium-term ecological</i> <i>processes (decomposition, soil</i> <i>carbon storage), and slow</i> <i>geological processes (fossil fuel</i> <i>formation, rock weathering), with</i> <i>quantitative analysis of how</i> <i>human activities have altered</i> <i>these fluxes and created</i> <i>imbalances, including potential</i> <i>climate feedback loops such as</i> <i>permafrost thawing, ocean</i> <i>acidification, and changing</i> <i>terrestrial productivity.</i>

HS-LS2-6	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in	Identify that ecosystems contain different organisms but show limited understanding of the interactions that maintain ecosystem stability.	Describe some interactions among organisms in ecosystems with partial understanding of how these contribute to system stability .	Evaluate scientific claims about ecosystem stability by analyzing the quality of evidence and reasoning about how complex interactions like competition, predation, and mutualism maintain biodiversity.	Construct sophisticated evaluations of scientific claims that integrate multiple lines of evidence across different ecosystems to analyze factors affecting stability , resilience , and transformation .
stable conditions, but changing conditions may result in a new ecosystem. DCI : LS2.C – Ecosystem Dynamics, Functioning, and Resilience	Recognize that ecosystems can change over time without accurately explaining the factors that contribute to resilience or vulnerability.	Explain that ecosystems can respond to disturbances but show incomplete analysis of the evidence for factors affecting resilience versus fundamental change.	Analyze evidence demonstrating how feedback mechanisms regulate ecosystem dynamics under stable conditions and how exceeding resilience thresholds can lead to alternative stable states.	Differentiate between correlation and causation in ecological studies, critically evaluating experimental design, data quality, and logical reasoning in arguments about ecosystem dynamics.
SEP: Engaging in Argument from Evidence CCC: Stability and Change	Describe ecological disturbances in general terms without evaluating evidence about how ecosystems respond to or recover from these changes.	Evaluate simple claims about ecosystem changes with limited assessment of the quality and sufficiency of evidence or the validity of reasoning.	Assess the strength of scientific arguments about how different types and magnitudes of disturbance affect ecosystem responses, distinguishing between resistance, resilience, and fundamental transformation.	Synthesize evidence from observational studies, experiments, and modeling to develop nuanced explanations of how complex adaptive systems respond to various perturbations.
ACT Integrations : Evaluation of Models, Drawing Conclusions	For example, state that "ecosystems can change when something disturbs them" without analyzing specific evidence about feedback mechanisms, population dynamics, or factors that maintain stability under normal conditions.	For example, explain that predator-prey relationships help keep populations in check, but provide limited evaluation of scientific evidence showing how multiple interactions and feedback mechanisms maintain ecosystem balance or how exceeding certain thresholds can cause regime shifts.	For example, evaluate scientific arguments about how complex interactions in a coral reef ecosystem (competition for space, predator-prey relationships, symbiotic partnerships) maintain diversity and function under stable conditions, while analyzing evidence that multiple stressors like warming, acidification, and pollution can push the system past a tipping point, resulting in a fundamentally different ecosystem state dominated by algae.	For example, critically evaluate competing scientific explanations for observed ecosystem shifts in multiple biomes, analyzing strengths and weaknesses in experimental evidence about keystone species, trophic cascades, and alternative stable states, and developing a coherent explanation for why some ecosystems demonstrate high resilience to major disturbances while others undergo catastrophic shifts when certain thresholds are exceeded.

HS-LS2-7	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	Identify some human impacts on the environment but show limited ability to design solutions that address these impacts.	Design basic solutions to environmental problems with some consideration of scientific principles but incomplete analysis of potential consequences or limitations.	Design detailed solutions for reducing human environmental impacts based on scientific understanding of ecosystem dynamics and biodiversity.	Develop innovative solutions that address complex environmental challenges by integrating multiple approaches and considering interactions across different scales.
DCIs : LS2.C – Ecosystem Dynamics, Functioning, and Resilience, LS4.D – Biodiversity and Humans	Propose simple, general solutions without sufficient consideration of their effectiveness or feasibility in addressing specific environmental problems.	Evaluate proposed solutions using some relevant criteria but show partial consideration of the complex trade-offs involved.	Evaluate proposed solutions using multiple criteria including effectiveness, feasibility, cost, and potential unintended consequences .	Evaluate proposed solutions using sophisticated analysis of system dynamics , incorporating feedback mechanisms, threshold effects, and resilience considerations.
SEP : Constructing Explanations and Designing Solutions	Recognize that biodiversity is important but provide minimal evaluation of how proposed solutions would specifically protect or enhance it.	Describe how solutions might reduce human impacts on biodiversity with limited analysis of evidence for effectiveness or insufficient refinement based on constraints.	Refine solutions based on scientific evidence, addressing limitations and optimizing for both environmental protection and human needs.	Refine solutions through iterative testing and modeling, optimizing for long-term effectiveness and adaptability to changing conditions.
CCC: Stability and Change ACT Integrations: Experimental Design, Scientific Investigation	For example, suggest "planting more trees" to address deforestation without analyzing what species to plant, where to plant them, how to ensure their survival, or how this solution addresses the root causes of the problem.	For example, design a habitat corridor to connect fragmented forests, but provide limited evaluation of its optimal location, width, or composition based on scientific evidence, or incompletely analyze potential unintended consequences like increased disease transmission or predator access.	For example, design a comprehensive watershed management plan to reduce agricultural runoff impacts on aquatic biodiversity, evaluate its effectiveness using models of nutrient cycling and aquatic ecosystem dynamics, and refine the solution by optimizing buffer zone width, farming practices, and incentive structures based on evidence from similar implemented solutions.	For example, design an integrated urban development approach that combines green infrastructure, habitat restoration, policy changes, and community engagement to enhance biodiversity while addressing climate resilience, evaluate it using complex systems modeling that incorporates multiple ecological and social variables, and refine the solution by developing adaptive management strategies that can respond to monitoring data and changing conditions over time.

HS-LS2-8	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	Identify examples of group behaviors in animals without evaluating how these behaviors affect survival or reproduction .	Describe various group behaviors with some explanation of their potential benefits to individuals or species but limited evaluation of scientific evidence .	Evaluate scientific evidence demonstrating how specific group behaviors affect individual fitness and species persistence.	Construct sophisticated evaluations of research on group behavior that integrate evidence from multiple methodologies (field studies, controlled experiments, comparative analyses) across diverse taxa.
 DCI: LS2.D – Social Interactions and Group Behavior SEP: Engaging in Argument from Evidence 	Recognize basic group structures like flocks or herds but show limited understanding of the evolutionary advantages of group living.	Explain that group living can provide advantages like protection from predators or improved resource acquisition with partial analysis of cause- effect relationships .	Analyze the strength of evidence for causal relationships between group behaviors and survival or reproductive advantages in diverse species.	Differentiate between proximate and ultimate causes of group behavior, evaluating evidence for the evolutionary mechanisms that have shaped social adaptations.
CCC : Cause and Effect ACT Integrations : Drawing Conclusions, Scientific Investigation	Describe social behaviors in general terms without analyzing evidence for their adaptive significance.	Evaluate simple claims about group behavior with limited assessment of the quality and sufficiency of evidence or the strength of logical reasoning.	Assess research studies investigating the evolutionary benefits and costs of cooperative behavior, division of labor, territorial defense, and other group interactions.	Synthesize evidence to explain how group behaviors represent trade-offs between individual and group interests, with nuanced analysis of how these behaviors have evolved under different ecological contexts.
	For example, note that birds migrate in flocks but not evaluate scientific evidence for how this group behavior increases navigation accuracy, reduces predation risk, or enhances energy efficiency compared to solitary migration.	For example, explain that wolves hunt in packs to take down larger prey, but provide limited evaluation of evidence showing how this cooperative behavior affects survival rates, reproductive success, or the evolution of specialized roles within the pack structure.	For example, critically evaluate experimental and observational evidence showing how honeybee communication about food sources increases colony food acquisition efficiency, how division of labor enhances overall colony productivity, and how these collective behaviors increase survival and reproductive success compared to solitary strategies.	For example, critically analyze research on cooperative breeding in birds, evaluating evidence from long-term field studies, genetic analyses, and behavioral experiments to explain how helpers enhance offspring survival, how kinship influences cooperation, and how ecological constraints shape the evolution of these complex social systems, while identifying limitations in current evidence and proposing testable hypotheses for further investigation.

HS-LS3-1	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	Recognize that traits are passed from parents to offspring without formulating questions about the molecular mechanisms involved in inheritance.	Formulate basic questions about how traits are passed from parents to offspring with some understanding of DNA's role but limited precision about genetic mechanisms.	Develop precise questions that clarify the molecular relationships between DNA, genes, chromosomes, and the expression of traits.	Generate sophisticated questions that integrate multiple levels of biological organization to explore how genetic information is maintained, expressed, and transmitted between generations.
DCI : LS3.A – Inheritance of Traits SEP : Asking Questions and Defining Problems	Identify DNA and chromosomes as related to heredity but ask questions that show limited understanding of how they code for traits.	Ask questions that connect DNA to traits but show incomplete understanding of how DNA sequences code for proteins that influence characteristics.	Formulate questions that address how the genetic code in DNA is translated into proteins that influence an organism's characteristics.	Formulate questions that explore complex inheritance patterns, addressing how gene interactions, epigenetic factors, and environmental influences affect trait expression.
CCC : Structure and Function	Ask general questions about inheritance that don't address the cause-effect relationships between genes and characteristics.	Generate questions about inheritance patterns with partial consideration of how chromosomal structures affect the transmission of genetic information.	Ask questions that explore the cause-effect connections between chromosomal behavior during meiosis and patterns of inheritance observed in offspring.	Develop questions that challenge existing models or address gaps in scientific understanding of genetic mechanisms and inheritance patterns.
ACT Integrations: Scientific Investigation, Understanding Concepts	For example, ask "Do children look like their parents because of genes?" without formulating more specific questions about how DNA sequences determine protein structure or how chromosomal arrangement affects trait inheritance.	For example, ask "How do genes on chromosomes determine eye color?" showing some understanding of the connection between genes and traits, but without questions addressing how specific DNA sequences are transcribed and translated into proteins that produce pigmentation.	For example, ask "How do specific nucleotide sequences in DNA determine the amino acid sequence in proteins that affect skin pigmentation, and how does the segregation of chromosomes during meiosis explain why siblings can have different skin tones even with the same parents?"	For example, formulate questions like "How do interactions between multiple genes, epigenetic modifications, and environmental factors together determine complex traits like height or disease susceptibility, and why do some genetic conditions show variable expressivity or incomplete penetrance across individuals with the same genotype?"

HS-LS3-2	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through	Identify that genetic variations exist without making claims about their specific sources or mechanisms .	Make general claims about sources of genetic variation with some supporting evidence but incomplete defense of how these mechanisms generate heritable changes.	Construct well-reasoned claims about multiple sources of genetic variation, defending each with appropriate scientific evidence .	Develop sophisticated claims that integrate multiple lines of evidence about various sources of genetic variation and their differential impacts on phenotype and fitness.
meiosis, (2) viable errors during replication, and/or (3) mutations caused by environmental factors. DCI : LS3.B – Variation of	Recognize that mutations can occur but show limited understanding of the different processes that generate genetic diversity .	Describe processes like meiosis or mutation with partial understanding of how they contribute to genetic diversity in populations.	Defend claims by explaining how specific mechanisms of variation—meiotic recombination, replication errors, and environmentally induced mutations—lead to different types of heritable changes.	Analyze the molecular mechanisms underlying different types of variation, defending claims about their relative evolutionary significance using diverse experimental evidence .
Traits SEP: Engaging in Argument from Evidence	Present basic statements about inheritance without defending them with relevant evidence or explaining cause-effect relationships .	Present evidence related to genetic variation but show limited ability to connect specific mechanisms to observable phenotypic differences .	Evaluate the relative significance of different sources of variation, using evidence to support cause- effect relationships between genetic mechanisms and evolutionary potential.	Synthesize information across scales to connect specific molecular processes to population-level genetic diversity and adaptive potential .
CCC : Cause and Effect ACT Integrations : Interpretation of Data, Scientific Investigation	For example, state that "mutations can change DNA" without making specific claims about the mechanisms of meiotic recombination, replication errors, or environmental mutagens, or providing evidence to support the relative importance of these sources of variation.	For example, claim that "crossing over during meiosis creates new combinations of genes" with some supporting evidence about the process, but without thoroughly defending how this, along with other mechanisms, explains patterns of variation observed in populations.	For example, make and defend the claim that "sexual reproduction generates extensive genetic diversity primarily through independent assortment and crossing over during meiosis" by citing evidence from genetic mapping studies, explaining the molecular mechanisms involved, and comparing the scale of variation produced through these processes versus spontaneous or induced mutations.	For example, construct and defend nuanced claims about how different mechanisms of generating variation (recombination, point mutations, chromosomal rearrangements, horizontal gene transfer) contribute differentially to evolutionary adaptation in various contexts, using evidence from molecular genetics, experimental evolution studies, and comparative genomics to support the arguments.

HS-LS3-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	Recognize that traits vary in populations without applying statistical concepts to analyze patterns of distribution .	Calculate basic probabilities for simple inheritance patterns but show partial understanding of how these relate to trait distribution in populations.	Apply statistical concepts (mean, variance, standard deviation) to analyze the distribution of traits within populations.	Integrate advanced statistical and probability concepts to analyze complex patterns of trait distribution across different populations and environmental factors
DCI: LS3.B – Variation of Traits SEP: Analyzing and	Identify basic inheritance patterns but show limited ability to use probability to predict or explain trait frequencies .	Apply elementary statistics to describe variation for single traits with limited analysis of how multiple factors contribute to population-level patterns.	Use probability principles to predict and explain patterns of inheritance, connecting theoretical predictions to observed frequencies of traits.	Model how various factors— including epistasis, pleiotropy, polygenic inheritance, and gene- environment interactions— contribute to quantitative variation in traits.
Interpreting Data CCC : Patterns; Scale, Proportion, and Quantity	Describe trait variations in qualitative terms without quantitative analysis of population distributions .	Use Punnett squares or simple probability rules with some ability to connect genotypic ratios to phenotypic frequencies.	Analyze how various factors— including multiple alleles, gene interactions, and environmental influences—affect the scale and pattern of variation in expressed traits.	Evaluate how selection, drift, and other evolutionary processes shape the statistical properties of trait distributions over generations.
ACT Integrations: Probability and Statistics, Data Analysis	For example, observe that "human height varies" without applying statistical measures like mean, range, or standard deviation to describe the distribution, or without using probability to explain how genotypic ratios relate to phenotypic frequencies.	For example, calculate the probability of specific genotypes from a monohybrid cross and describe the expected phenotypic ratio, but show limited ability to apply these concepts to explain continuous trait variation or the effects of multiple genes and environmental factors on population distributions.	For example, analyze a population dataset showing the distribution of a trait like height, calculate statistical measures of central tendency and variation, and explain how this distribution reflects both genetic factors (multiple genes, dominant/recessive relationships) and environmental influences, using probability concepts to explain why certain phenotypes appear at specific frequencies.	For example, analyze datasets showing the distribution of a complex trait across different populations, apply statistical tests to compare means and variances, model how the trait's heritability affects response to selection, and predict how the distribution would change under different scenarios of selection intensity, population size, and environmental variation.

HS-LS4-1	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	Identify some evidence related to evolution without effectively communicating how multiple lines of evidence support common ancestry .	Describe several types of evidence for evolution with some explanation of how they support common ancestry .	Communicate clearly how multiple, independent lines of evidence collectively support common ancestry and biological evolution.	Synthesize complex scientific information to explain how diverse evidence forms an interconnected web of support for evolutionary theory .
DCI : LS4.A – Evidence of Common Ancestry and Diversity SEP : Obtaining, Evaluating,	Recognize basic concepts like fossils or anatomical similarities but show limited ability to connect these to evolutionary relationships .	Communicate information about comparative anatomy or embryology with partial connections to evolutionary relationships .	Integrate information from different fields—including paleontology, comparative anatomy, embryology, molecular biology, and biogeography—to explain convergent patterns that support evolutionary theory.	Analyze how new technologies and discoveries continue to strengthen the case for common ancestry, while explaining how science has addressed historical challenges to evolutionary theory.
and Communicating Information CCC: Patterns	Present information about biological diversity without clearly communicating the patterns that indicate evolutionary history.	Present some patterns in molecular or fossil evidence but show incomplete integration of multiple lines of supporting data.	Evaluate the strength of various forms of evidence and explain how they provide a coherent scientific explanation for the diversity of life.	Communicate effectively about the nature of science and how the multiple lines of evidence for evolution exemplify the process of building scientific knowledge .
ACT Integrations: Interpretation of Data, Scientific Explanation	For example, mention that "fossils show ancient organisms" without effectively communicating how the fossil record, along with other evidence, demonstrates patterns of change over time and supports the concept of common ancestry.	For example, communicate that homologous structures in vertebrate limbs suggest common ancestry, but provide limited explanation of how this evidence is strengthened when combined with molecular, embryological, and fossil evidence to form a coherent scientific explanation.	For example, systematically communicate how patterns in the fossil record show transitional forms, how homologous structures and embryological similarities indicate shared ancestry, how molecular evidence (DNA and protein sequences) provides quantifiable measures of relationship, and how biogeographical patterns reflect evolutionary history—all converging to support common ancestry despite being derived from different methodologies.	For example, construct a sophisticated scientific explanation that not only integrates traditional evidence from comparative anatomy, fossils, and embryology with modern genomic data, but also analyzes how predictions made by evolutionary theory have been repeatedly confirmed by new discoveries (such as transitional fossils like Tiktaalik or the evolution of antibiotic resistance), discusses how apparent contradictions have been resolved, and explains why evolution represents a powerful unifying theory in biology.

HS-LS4-2	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Construct an explanation	Identify some factors related to	Construct basic explanations that	Construct a comprehensive	Develop sophisticated
based on evidence that	evolution without constructing a	include some evolutionary factors	explanation that integrates all	explanations that integrate the
the process of evolution	coherent explanation of how they	but show incomplete integration	four factors of evolution,	four evolutionary factors across
primarily results from four	drive evolutionary change.	of all four key components or	supported by relevant scientific	multiple scales, from molecular to
factors: (1) potential for		limited use of supporting	evidence.	ecological, with robust
species to increase in		evidence.		supporting evidence.
number, (2) heritable	Recognize concepts like natural	Explain natural selection with	Explain how reproductive	Analyze how these factors
genetic variation, (3)	selection but show limited	some understanding of how	potential, heritable variation,	interact in different contexts,
competition for limited	understanding of the necessary	variation and differential survival	resource competition, and	explaining how variations in their
resources, and (4)	conditions that make evolution	contribute to adaptive change	differential survival and	relative importance can lead to
proliferation of better-	possible.	but partial connection to	reproduction together cause	different evolutionary outcomes.
adapted organisms.		reproductive potential or	adaptive change in populations	
		resource limitation.	over time.	
	Describe competition or	Describe evolutionary processes	Analyze the evidence supporting	Evaluate how additional factors—
DCI: LS4.B – Natural	adaptation in general terms	with some supporting evidence	each factor, demonstrating how	such as genetic drift, gene flow,
Selection	without connecting these to the	but limited analysis of the causal	they work together as a causal	and sexual selection—interact
	mechanisms of evolutionary	relationships among the four	mechanism for evolutionary	with the four primary factors to
	change.	factors.	change.	shape evolutionary trajectories.
SEP: Constructing	For example, state that	For example, explain that	For example, develop an	For example, construct an
Explanations	"organisms compete for	"organisms with advantageous	explanation of how a bacterial	explanation of adaptive radiation
	resources" without constructing	traits survive better and pass	population evolves antibiotic	in cichlid fishes by analyzing
	an explanation of how this	these traits to offspring," but	resistance by citing evidence for:	evidence for how: (1) high
CCC: Cause and Effect	competition, combined with	provide an incomplete	(1) the rapid reproductive	reproductive rates allow rapid
	heritable variation, reproductive	explanation of how this process	potential of bacteria, (2) the	population growth, (2) specific
	potential, and differential	relates to reproductive potential,	random mutations and genetic	genetic mechanisms and sexual
ACT Integrations: Scientific	survival, drives evolutionary	the sources of heritable variation,	recombination that create	reproduction create tremendous
Explanation,	change in populations.	and competition for limited	heritable variation in resistance,	variation in feeding structures
Understanding Concepts		resources.	(3) the competition for resources	and coloration, (3) specialized
			intensified by antibiotic presence,	competition for different food
			and (4) the selective survival and	resources creates divergent
			reproduction of bacteria with	selection pressures, and (4)
			mutations conferring resistance.	differential survival and
				reproductive success in different
				microhabitats leads to
				speciation—while also evaluating
				how factors like genetic drift in
		V		

isolated populations and sexual selection for mate recognition further influence the evolutionary

outcome.

HS-LS4-3	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Apply concepts of statistics and probability to support explanations that organisms with advantageous heritable traits tend to increase in	Recognize that advantageous traits can become more common without applying statistical or probability concepts to analyze this pattern .	Apply basic probability concepts to predict inheritance patterns with some understanding of how these relate to changes in trait frequency.	Apply appropriate statistical and probability concepts to analyze data showing how advantageous traits increase in frequency over generations.	Integrate advanced statistical methods and probability models to analyze complex patterns of selection acting on multiple traits simultaneously.
proportion to those lacking the traits. DCI : LS4.C – Adaptation	Identify examples of natural selection but show limited ability to use quantitative approaches to explain changes in trait frequencies.	Calculate simple proportions or percentages to describe trait distributions but show partial ability to use these to explain patterns of change over generations.	Use mathematical models to support explanations of how selection pressures alter the distribution of traits in a population.	Model how various factors— including selection intensity, heritability, and population size— quantitatively affect the rate and direction of evolutionary change.
SEP : Analyzing and Interpreting Data	Describe adaptations in qualitative terms without	Use statistical terms with some accuracy but incomplete	Calculate changes in allele and genotype frequencies to	Evaluate how statistics and probability help distinguish
CCC: Patterns	applying mathematical reasoning to support explanations of proportional changes .	application to support explanations of how selection pressures alter trait distributions.	demonstrate how heritable variation and differential reproduction create predictable patterns in trait distributions.	between changes due to selection versus random processes, supporting sophisticated explanations of
ACT Integrations: Data Interpretation, Probability				evolutionary dynamics.
and Statistics	For example, state that "giraffes with longer necks survived better" without applying statistical concepts to explain how this advantage would change the distribution of neck lengths in the population over generations.	For example, calculate the proportion of a trait in a population and describe how it might increase, but with limited application of probability concepts to model the multi- generational effects of selection or to predict how the strength of selection affects the rate of change.	For example, analyze a dataset showing the frequency distribution of beak sizes in a bird population before and after a drought, apply statistical tests to demonstrate significant changes, and use probability models to explain how stronger selection for larger beaks leads to predictable shifts in the trait distribution over multiple generations.	For example, apply statistical analyses to complex datasets showing changes in multiple correlated traits, model how selection gradients influence the evolution of trait combinations, calculate how heritability affects response to selection, and predict population trajectories under different selection scenarios while accounting for factors like genetic drift and gene flow that introduce stochastic elements.

HS-LS4-4	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Construct an explanation based on evidence for how natural selection leads to adaptation of populations. DCI : LS4.C – Adaptation	Identify examples of adaptations without constructing explanations for how they developed through natural selection .	Construct basic explanations linking natural selection to adaptations with some supporting evidence but incomplete analysis of the mechanism by which populations change.	Construct detailed explanations based on evidence for how specific selection pressures acting on heritable variation lead to adaptation of populations.	Develop sophisticated, multi- causal explanations that integrate various forms of evidence to explain how complex adaptations evolve through natural selection.
SEP : Constructing Explanations CCC : Cause and Effect	Recognize that organisms are suited to their environments but show limited understanding of the causal processes that lead to population-level adaptation.	Explain that favorable traits become more common through differential survival with partial understanding of how this process leads to population-level adaptation over time.	Analyze the relationship between environmental challenges, variation within populations, differential survival and reproduction, and the resulting adaptive changes.	Analyze how multiple selection pressures interact to shape adaptations, explaining trade-offs and constraints that influence the evolutionary outcome .
ACT Integrations : Scientific Investigation, Interpretation of Data	Describe adaptive traits in general terms without connecting them to the selection pressures that shaped them.	Use some evidence to support explanations but show limited ability to connect specific selection pressures to observed adaptive traits .	Use multiple lines of evidence— including field observations, experimental results, and molecular data—to support explanations of how natural selection has shaped particular adaptations.	Evaluate alternative explanations for adaptive traits, using evidence to distinguish between traits shaped by selection and those resulting from other evolutionary processes .
	For example, describe the camouflage coloration of an arctic fox without constructing an explanation of how predation pressure, heritable variation in coat color, and differential survival led to the adaptation of white fur in the population.	For example, explain that "faster cheetahs catch more prey and reproduce more" but provide limited evidence about the variation in speed within the population, the heritability of traits affecting speed, or how the proportion of genes for speed changed over generations.	For example, construct an explanation for bacterial antibiotic resistance using evidence that shows: random mutations created variation in resistance, antibiotic exposure created strong selection pressure, bacteria with resistance genes survived and reproduced at higher rates, and the frequency of resistance genes increased over generations until the population became adapted to the presence of antibiotics.	For example, construct a comprehensive explanation for the evolution of C4 photosynthesis in plants by analyzing paleoclimatic evidence for changing CO2 levels, comparative physiological data showing advantages in hot/dry conditions, molecular evidence revealing the stepwise evolution of the pathway, and experimental studies demonstrating selection under different conditions—while also explaining why certain plant lineages evolved this adaptation while others did not due to developmental constraints and historical contingency.

HS-LS4-5	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species, and/or (3) the extinction of other species. DCI : LS4.C – Adaptation	Identify that environmental changes affect species without evaluating evidence for specific population responses. Recognize concepts like extinction or adaptation but show limited ability to assess the evidence supporting claims about these processes.	 Examine some evidence for how environmental changes affect species with partial evaluation of the strength and relevance of the data. Describe examples of population changes, speciation, or extinction with some assessment of supporting evidence but limited analysis of the causal mechanisms involved. 	Evaluate the quality, quantity, and consistency of evidence supporting claims about how environmental changes affect biodiversity patterns. Analyze scientific studies that demonstrate causal links between specific environmental changes and their effects on population sizes, speciation rates, and extinction risks.	Construct sophisticated evaluations of competing scientific claims about how environmental changes affect biodiversity, analyzing methodological strengths and limitations of supporting studies. Synthesize evidence across multiple time scales and research approaches to assess complex causal pathways from environmental change to biodiversity impacts.
SEP : Engaging in Argument from Evidence CCC : Stability and Change	Describe general relationships between environment and species survival without critically examining the causal links or strength of supporting data.	Evaluate basic claims about species responses to environmental change with incomplete consideration of alternative explanations or evidence quality.	Assess the strength of evidence for different mechanisms by which environmental change drives ecological and evolutionary responses, distinguishing between well- supported and weakly supported claims.	Identify gaps in current evidence and evaluate how uncertainty affects confidence in predictions about future biodiversity responses to environmental change.
ACT Integrations: Scientific Investigation, Drawing Conclusions	For example, state that "climate change can cause extinctions" without evaluating specific evidence demonstrating how particular environmental changes affect population dynamics, speciation rates, or extinction risk for different species.	For example, examine evidence that warming temperatures are affecting butterfly ranges and phenology, but provide limited evaluation of how well this evidence demonstrates causal relationships, how comprehensive the data collection was, or how it connects to broader patterns of biodiversity change.	For example, systematically evaluate multiple lines of evidence—including fossil records, experimental studies, and field observations—that demonstrate how ocean acidification affects marine invertebrate populations, how geographic isolation due to changing sea levels has facilitated speciation in island systems, and how narrow temperature tolerance has increased extinction risk for specialized coral reef species.	For example, critically analyze competing explanations for the Permian-Triassic mass extinction by evaluating the strength of evidence from geochemical proxies, fossil assemblages, and comparative physiological studies; synthesize evidence of how current climate change affects species across different taxonomic groups and ecosystems; and assess limitations in current understanding of how interaction effects between multiple environmental stressors influence extinction vulnerability.

HS-LS4-6	Below Proficient	Approaching Proficient	Proficient	Above Proficient
Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	Identify some human impacts on biodiversity without creating or revising simulations to test potential solutions .	Create basic simulations that test simple solutions with limited variables or incomplete consideration of how they address the complexity of biodiversity threats.	Create detailed simulations that test proposed solutions to biodiversity loss, incorporating multiple variables and clearly defined cause-effect relationships.	Design sophisticated simulations that integrate multiple ecological processes and human activities to test comprehensive solutions addressing interacting threats to biodiversity.
DCI: LS4.D – Biodiversity and Humans SEP: Using Mathematics and Computational Thinking	Describe general conservation approaches but show limited ability to develop computational representations of how these approaches would work.	Develop rudimentary models showing cause-effect relationships between conservation actions and biodiversity outcomes but with partial analysis of effectiveness.	Develop computational models that represent how specific conservation actions would mitigate identified human impacts on biodiversity at appropriate spatial and temporal scales .	Create models that represent complex adaptive systems, allowing for emergent properties and feedback loops when testing the effectiveness of proposed conservation strategies.
CCC : Systems and System Models	Recognize that biodiversity loss is a problem without developing testable models of how proposed solutions would affect ecological systems .	Revise simulations in limited ways that don't fully address the interactions between different factors affecting biodiversity conservation.	Revise simulations based on initial results or new evidence, improving the models to better represent the complex interactions in ecological systems.	Systematically revise simulations using sensitivity analysis and scenario testing to optimize solutions for multiple conservation objectives while accounting for socioeconomic
ACT Integrations: Experimental Design, Interpretation of Simulations	For example, suggest creating wildlife preserves to protect endangered species but not develop a simulation to test how preserve size, location, or connectivity would affect population viability or ecosystem function.	For example, create a simple population model showing how reducing harvesting affects a single species' abundance, but with limited incorporation of habitat requirements, species interactions, or how the proposed solution addresses multiple human impacts across different scales.	For example, develop an agent- based model that simulates how a proposed wildlife corridor system would affect population connectivity, genetic diversity, and species persistence in a fragmented landscape, and then revise the model based on testing results to optimize corridor placement, width, and habitat composition for multiple species.	constraints. For example, develop a complex socio-ecological system model that integrates climate change projections, land-use change, species interactions, and human economic activities to test a multi- faceted conservation strategy combining protected area expansion, sustainable harvest practices, and economic incentives, then use systematic model revision to identify robust solutions that maintain biodiversity while balancing competing demands across different future scenarios.