Key Shifts in CCSS Mathematics

Shift	Focus	Teachers significantly narrow & deepen the scope of how time and energy is spent in the math
1		classroom. They do so to focus deeply on only the concepts prioritized in the standards so
		students have strong foundational knowledge & deep conceptual understanding and can
		transfer mathematical skills and understanding across concepts and grades.
Shift	Coherence	Teachers carefully connect learning within and across grades, so, for example, fractions or
2		multiplication spiral across grade levels & students can build new understanding from
		foundations built in previous years. Teachers can begin to count on students' deep conceptual
		understanding of core content & build on it. Each standard is not a new event, but an extension
		of previous learning.
Shift	Fluency	Students are expected to have speed & accuracy w/simple calculations; teachers structure class
3		time and/or homework time for students to memorize, through repetition, core functions such as
		multiplication tables, so they are more able to understand & manipulate more complex concepts.
Shift	Deep	Teachers teach more than how to get the answer and, instead, support students' ability to
4	Understanding	access concepts from a number of perspectives, so students are able to see math as more than a
		set of mnemonics or discrete procedures. Students demonstrate deep conceptual understanding
		of core math concepts by applying them to new situations, as well as writing and speaking
		about their understanding.
Shift	Application	Students are expected to use math and choose appropriate concepts for applications even when
5		they are not prompted to do so. Teachers provide opportunities at all grade levels for students to
		apply math concepts in "real world" situations. Teachers in content areas outside of math,
		particularly science, ensure that students are using math, at all grade levels, to make meaning of,
		and access, content.
Shift	Dual Intensity	Students are practicing and understanding . There is more than a balance between these two
6		things in the classroom – both occur with intensity. Teachers create opportunities for students to
		participate in drills & make use of skills through extended application of math concepts. Amount
		of time and energy spent practicing & understanding in learning environments is driven by the
		specific mathematical concept and varies throughout the given school year.

Adapted from: http://engageny.org/wp-content/uploads/2011/08/common-core-shifts.pdf

Illinois State Board of Education/SSOS Math Content Specialists Team/Summer Regional Conference 2012