# ESSA – Meaningfully Differentiate All Public Schools

October 8, 2024



# ESSA – (c)(4)(C) – Categorization by Index Implied

#### (C) ANNUAL MEANINGFUL DIFFERENTIATION

- (i) based on all indicators in the State's accountability system
- afford (I) substantial weight to each such indicator; and
- (II) in the aggregate, **much greater weight** than is afforded to the indicator or indicators utilized by the State

A multi-measures weighted index by any other name

### **Education Commission of the States – 50 State Scan**

- Equates names with methodology
  - IL uses a weighted index but is categorized as descriptive
- To see methodology look at Indicators & Weights
  - States with weights or score values are using an index
  - 14 states becomes 43 when looking at indicators and weights

| STATE ↑  | Rating System            |  |  |  |
|----------|--------------------------|--|--|--|
| Florida  | Index Rating System      |  |  |  |
| Georgia  | Federal Tiers of Support |  |  |  |
| Hawaii   | Index Rating System      |  |  |  |
| Idaho    | Federal Tiers of Support |  |  |  |
| Illinois | Descriptive              |  |  |  |
| Indiana  | Descriptive              |  |  |  |
| lowa     | Index Rating System      |  |  |  |
| Kansas   | Descriptive              |  |  |  |



#### **Non-Negotiables**

**1.** A single system – CSI/TSI identification must be part of the designation

**2. Criterion referenced - Performance expectations clear** 

To be determined

To be determined



# Options

- Index Options
  - Complex Index
    - Can be normed or criterion referenced
    - Good for states with many schools & diverse configurations
  - Simple Index
    - Criterion referenced
    - Lowest category can easily exceed 5% so either a dual system or higher CSI/TSI identification rate
  - Unweighted Index
    - CSI/TSI a separate calculation

- Non-Index Options
  - Decision Tree
    - Criterion referenced
    - Easier to follow while still having capacity for complexity
  - Matrix
    - A combination of index & decision tree methods
  - Portfolio
    - CSI/TSI a separate calculation



# Simple Index Example

| Indicator                      | Points | Out of | Criteria                                               |
|--------------------------------|--------|--------|--------------------------------------------------------|
| ELA Proficiency                | 8      | 12     | ≥ 85% earns full points                                |
| Math Proficiency               | 7      | 12     | ≥ 85% earns full points                                |
| Graduation Rate                | 28     | 30     | ≥ 94% earns full points w/ no groups below 66.67%      |
| ELPtP                          | 4      | 5      | ≥ 85% meeting or exceeding<br>target earns full points |
| Dual Credit, CPE or AP         | 20     | 20     | ≥ 85% earns full points                                |
| 9 <sup>th</sup> Grade On Track | 13     | 15     | ≥ 96% earns full points                                |
| Chronic Absenteeism            | 3      | 6      | ≤ 15% earns full points                                |

- Weight is built into the possible indicator points
- Summed overall score is used to assign designation
- Can produce more or less differentiation depending on how criteria are set

| Proficiency Points Criteria by Minimum Percentage |     |     |     |     |       |     |     |     |     |     |     |
|---------------------------------------------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|
| ≥85                                               | ≥80 | ≥75 | ≥70 | ≥65 | ≥57.5 | ≥50 | ≥40 | ≥30 | ≥20 | ≥10 | <10 |
| 12                                                | 11  | 10  | 9   | 8   | 7     | 6   | 5   | 4   | 3   | 2   | 1   |

### **Decision Tree**

|     | What is the postsecondary placement rate?  |                         |                         |               |                    |  |  |  |
|-----|--------------------------------------------|-------------------------|-------------------------|---------------|--------------------|--|--|--|
|     | ≥80%                                       | ≥75%                    | >40%                    | Between       | <7%                |  |  |  |
| 83% | Exemplary<br>Eli <mark>c</mark> ble        | Commendable<br>Eligible | Approaching<br>Eligible | Next Question | =<br>Comprehensive |  |  |  |
|     | What is the composite proficiency rate?    |                         |                         |               |                    |  |  |  |
|     | ≥7 <i>5</i> %                              | ≥55%                    | >35%                    | Between       | <10%               |  |  |  |
| 74% | Exemplary<br>Eligible                      | Commendable<br>Eligible | Approaching<br>Eligible | Next Question | =<br>Comprehensive |  |  |  |
|     | s either subject's proficiency rate below? |                         |                         |               |                    |  |  |  |
| 59% | N/A                                        | <60%                    | <30%                    | Between       | <7%                |  |  |  |
| 89% | Exemplary<br>Eligible                      | Commendable<br>Eligible | Approaching<br>Eligible | Next Question | =<br>Comprehensive |  |  |  |
|     | What is the graduation rate?               |                         |                         |               |                    |  |  |  |
| 93% | ≥94%                                       | ≥91%                    | ≥87%                    | Between       | <66.67%            |  |  |  |
|     | Exemplary<br>Eligible                      | Commendable<br>Eligible | Approaching<br>Eligible | Next Question | =<br>Comprehensive |  |  |  |

- No scoring or weighting of indicators
  - Order in sequence determines weight
- Instead, performance determines the highest designation eligible or below which they are no longer eligible to be a designation
- Contingent logic can be used to make complex categorizations (e.g., if proficiency is between 30 & 40, Commendable when growth is XX, and Approaching when growth is YY)



# Matrix Example

|             | Proficiency ≥6<br>Growth <40% |        | Proficiency ≥60%<br>Growth ≥60% |  |  |
|-------------|-------------------------------|--------|---------------------------------|--|--|
| Proficiency |                               |        |                                 |  |  |
| ā           | Proficiency <3<br>Growth <40% |        | Proficiency ≥35%<br>Growth ≥60% |  |  |
|             |                               | Growth |                                 |  |  |

Growth between 40 and 59 Proficiency between 35 & 60

- A matrix is a twodimensional decision tree.
- To account for all indicators, either have multiple matrices, or combine indicators on a single axis
  - E.g. graduation rate and post-secondary placement rate vs. proficiency & ELPtP

