
Matrix Approaches in Accountability

Accountability Problems of Practice

- 1. Our accountability system for schools is **not criterion-based**
- 2. Misleading data (e.g., 70% of schools labeled "commendable") prevents us from directing resources to where they are needed most
- 3. The system tells schools that there is a problem (it sorts) but does **not indicate what strategies or supports might be most helpful** in addressing the problem (informs)

- Set clear criteria for categorization (e.g., it should be simple to understand what performance places you in each category)
- The categories should represent defensible differences in performance

Schools will receive a supplemental report driven by questions about school practices & programming featuring helpful metrics that don't make good ESSA indicators

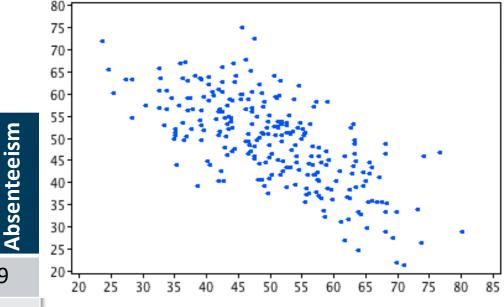
Advantages and Disadvantages of a Matrix

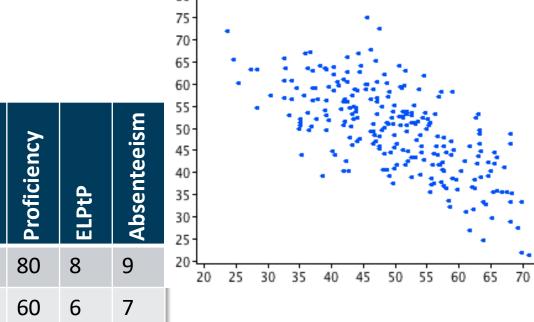
Advantages

- A matrix is used to show relationships among metrics or variables that can have categorical or ordinal ranges of variance
- Can be visually easy to understand
- Can be **tabular or graphic** (grid), chained or independent

Disadvantages

- Limited to two dimensions, except insofar as you place formulae in as the matrix values or create chained matrices
- Missing values are highly problematic
- Fundamentally just a way of representing data

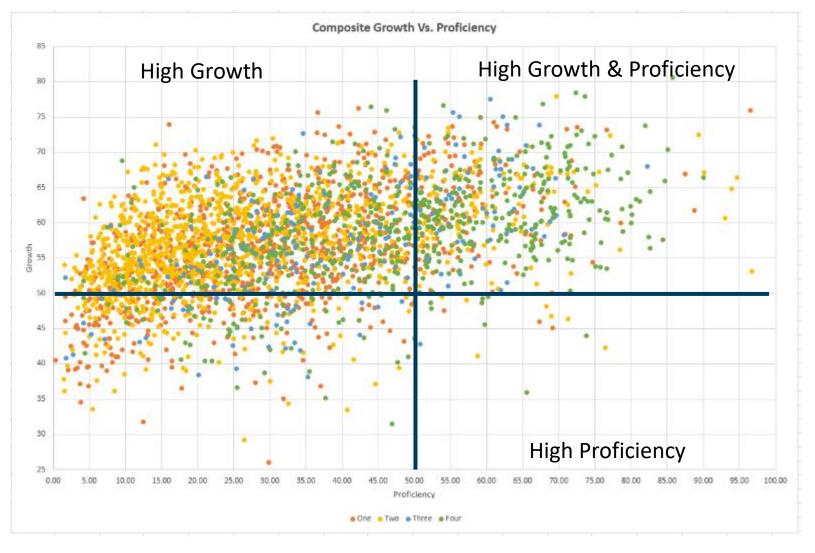

Matrices are more often used as part of a larger accountability system (decision tree or index) rather than <u>as the system</u>



Tabular and Graphic Matrices

Lookup or Value Table

Scatterplot

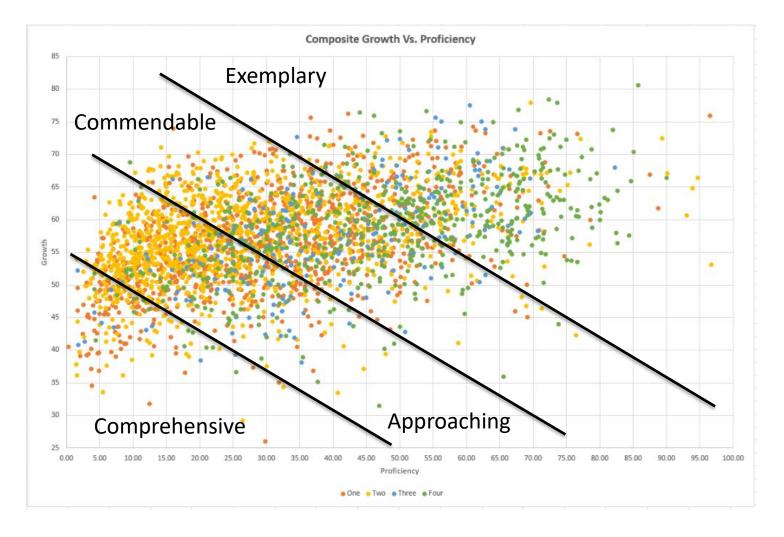


>		1	2	3	4	5
Prior Year Proficiency	1	1	1.5	2	2.5	2.5
rofic	2	0	1	1.5	2.5	2.5
ear F	3	0	.75	1	2.5	2.5
ior Y	4	0	.5	.75	2	2.5
Ρr	5	0	.25	.5	1	2

Current Year Proficiency

	Growth	Proficiency	ELPtP	Absenteeism
Exemplary	60	80	8	9
Commendable	50	60	6	7
Approaching	40	40	2	6
Comprehensive	25	10	1	5

Model 1. Square Grid


Model 2. Tangram

One - Two Three Four

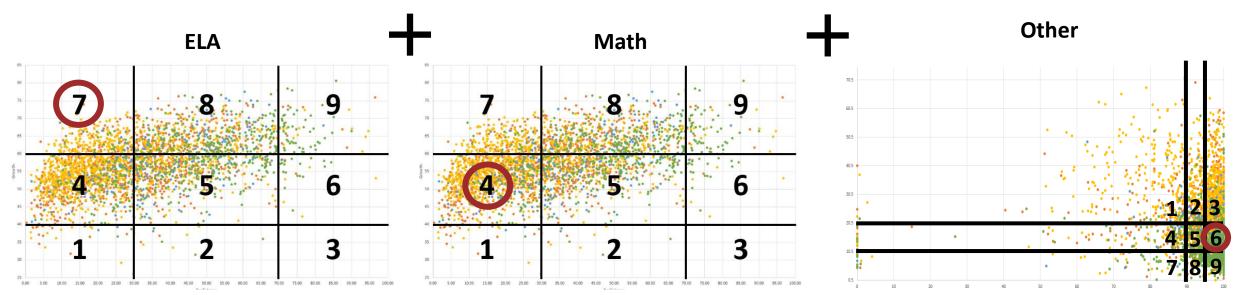
Model 3. Linear Relationship Slices

Model 4. Rectangular / Diagonal Matrix (2 x N)

Graduation Rate v Proficiency Graduation Rate Proficiency

The utility of a matrix depends on the strength and directionality of the relationship between the axes.

STATE BOARD OF


One • Two • Three • Four

Matrix as Part of an Index

- Multiplicative total gives a much broader range.
- Summative total may be easier to understand and calculate for all stakeholders.
- Schools with missing indicators are advantaged or penalized more with a multiplicative total.

Model 5. Square Matrices Summed to an Index

Simple Index = 7 + 4 + 6 = 17 out of 27 = 62.96% \rightarrow ??Commendable?? Weighted Index = (7x2) + (4x2) + 6 = 28 out of 45 = 62.2% \rightarrow ??Approaching??

Adjusting weights doesn't much change where a school falls in a distribution. It only changes the shape of the distribution.

Sample 6. Simple Index Table - Additive

Growth Proficiency		Total	Designation	
1	7	8	Exemplary	
2	6	8	Exemplary	
3	5	8	Exemplary	
4	4	8	Exemplary	

Sample 7. Multiplicative Matrix

Academic

		Exemplary	1					Co	ommendab	le
	AVG SGP	AVG Prof	Sci Prof	ELPtP	Total	Total	ELPtP	Sci Prof	AVG Prof A	AVG SGP
	100	70	7	7	184					
	90	80	8	8	186					
	80	90	9	9	188					
	70	100	10	10	190					
* ≥ :		184			184 >	* > 47				
* <		47			* <	47				
			For one or more Student groups						-	
						47	1	1	10	35
						Total	ELPtP	Sci Prof	AVG Prof /	AVG SGP
Targeted					1		Compre	hensive\In	tensive	

Exemplary Commendable Chronic Climate Survey Total Total Absenteeism 50 140 90 80 60 140 70 70 140 60 80 140 140 > * > 70 ***** ≥ 140 * * ≤70 * ≤ 70 For one or more Student groups 70 20 50 70 15 55 10 70 60 Chronic Climate Survey Absenteeism Total Targeted Comprehensive\Intensive

School Quality

Conclusion

- It may be a useful way to display some of the data from an accountability system.
- It is too vulnerable to issues of missing data to be a viable option for IL without also being paired with a multi-measures index of some kind.
- In which case, we should simply focus on creating a better index.

